Автор: Пользователь скрыл имя, 10 Марта 2013 в 22:45, реферат
Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .
– число наблюдений,
– число параметров в модели (без свободного члена).
Фактическое значение частного -критерия сравнивается с табличным при уровне значимости и числе степеней свободы: 1 и . Если фактическое значение превышает , то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то дополнительное включение в модель фактора не увеличивает существенно долю объясненной вариации признака , следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.
Для двухфакторного уравнения частные -критерии имеют вид:
, . (2.23а)
С помощью частного -критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор вводился в уравнение множественной регрессии последним.
Частный -критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и -критерий для коэффициента регрессии при -м факторе, , а именно:
. (2.24)
Оценка значимости коэффициентов чистой регрессии по -критерию Стьюдента может быть проведена и без расчета частных -критериев. В этом случае, как и в парной регрессии, для каждого фактора используется формула:
, (2.25)
где – коэффициент чистой регрессии при факторе ,
– средняя квадратическая (стандартная) ошибка коэффициента регрессии .
Для уравнения множественной регрессии средняя квадратическая ошибка коэффициента регрессии может быть определена по следующей формуле:
, (2.26)
где – среднее квадратическое отклонение для признака ,
– среднее квадратическое отклонение для признака ,
– коэффициент детерминации для уравнения множественной регрессии,
– коэффициент детерминации для зависимости фактора со всеми другими факторами уравнения множественной регрессии;
– число степеней свободы
для остаточной суммы
Как видим, чтобы воспользоваться данной формулой, необходимы матрица межфакторной корреляции и расчет по ней соответствующих коэффициентов детерминации . Так, для уравнения оценка значимости коэффициентов регрессии , , предполагает расчет трех межфакторных коэффициентов детерминации: , , .
Взаимосвязь показателей частного коэффициента корреляции, частного -критерия и -критерия Стьюдента для коэффициентов чистой регрессии может использоваться в процедуре отбора факторов. Отсев факторов при построении уравнения регрессии методом исключения практически можно осуществлять не только по частным коэффициентам корреляции, исключая на каждом шаге фактор с наименьшим незначимым значением частного коэффициента корреляции, но и по величинам и . Частный -критерий широко используется и при построении модели методом включения переменных и шаговым регрессионным методом.