Автор: Пользователь скрыл имя, 10 Марта 2013 в 22:45, реферат
Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией .
Рассмотренный
смысл стандартизованных
На основе
линейного уравнения
(2.7)
могут быть
найдены частные уравнения
(2.8)
т.е. уравнения
регрессии, которые связывают
При подстановке
в эти уравнения средних
(2.9)
где
В отличие
от парной регрессии частные уравнения
регрессии характеризуют
, (2.10)
где – коэффициент регрессии для фактора в уравнении множественной регрессии,
– частное уравнение
Наряду с частными коэффициентами эластичности могут быть найдены средние по совокупности показатели эластичности:
, (2.11)
которые показывают на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.
Проверка существенности факторов и показатели качества регрессии
Практическая
значимость уравнения множественной
регрессии оценивается с
Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком или, иначе, оценивает тесноту совместного влияния факторов на результат.
Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:
, (2.12)
где – общая дисперсия результативного признака; – остаточная дисперсия.
Границы
изменения индекса
.
При правильном
включении факторов в регрессионную
модель величина индекса множественной
корреляции будет существенно отличаться
от индекса корреляции парной зависимости.
Если же дополнительно включенные в
уравнение множественной
Расчет
индекса множественной
. (2.13)
Можно пользоваться следующей формулой индекса множественной детерминации:
. (2.14)
При линейной
зависимости признаков формула
индекса множественной
, (2.15)
где – стандартизованные коэффициенты регрессии;
– парные коэффициенты
корреляции результата с
Формула
индекса множественной
Возможно также при линейной
зависимости определение
, (2.16)
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
Как видим, величина множественного коэффициента корреляции зависит не только от корреляции результата с каждым из факторов, но и от межфакторной корреляции. Рассмотренная формула позволяет определять совокупный коэффициент корреляции, не обращаясь при этом к уравнению множественной регрессии, а используя лишь парные коэффициенты корреляции.
В рассмотренных
показателях множественной
Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно остаточная сумма квадратов делится на число степеней свободы остаточной вариации , а общая сумма квадратов отклонений на число степеней свободы в целом по совокупности .
Формула скорректированного индекса множественной детерминации имеет вид:
, (2.17)
где – число параметров при переменных ;
– число наблюдений.
Поскольку , то величину скорректированного индекса детерминации можно представить в виде:
. (2.17а)
Чем больше величина , тем сильнее различия и .
Как было
показано выше, ранжирование факторов,
участвующих во множественной линейной
регрессии, может быть проведено
через стандартизованные
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.
Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.
В общем виде при наличии факторов для уравнения
коэффициент частной корреляции, измеряющий влияние на фактора , при неизменном уровне других факторов, можно определить по формуле:
, (2.18)
где – множественный коэффициент детерминации всех факторов с результатом;
– тот же показатель детерминации, но без введения в модель фактора .
При двух факторах формула (2.18) примет вид:
; . (2.18а)
Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, – коэффициент частной корреляции первого порядка. Соответственно коэффициенты парной корреляции называются коэффициентами нулевого порядка. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по рекуррентной формуле:
(2.19)
При двух факторах данная формула примет вид:
; . (2.19а)
Для уравнения регрессии с тремя факторами частные коэффициенты корреляции второго порядка определяются на основе частных коэффициентов корреляции первого порядка. Так, по уравнению возможно исчисление трех частных коэффициентов корреляции второго порядка:
, , ,
каждый из которых определяется по рекуррентной формуле. Например, при имеем формулу для расчета :
. (2.20)
Рассчитанные по рекуррентной формуле частные коэффициенты корреляции изменяются в пределах от –1 до +1, а по формулам через множественные коэффициенты детерминации – от 0 до 1. Сравнение их друг с другом позволяет ранжировать факторы по тесноте их связи с результатом. Частные коэффициенты корреляции дают меру тесноты связи каждого фактора с результатом в чистом виде. Если из стандартизованного уравнения регрессии следует, что , т.е. no силе влияния на результат порядок факторов таков: , , , то этот же порядок факторов определяется и по соотношению частных коэффициентов корреляции, .
В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. Их используют на стадии формирования модели. Так, строя многофакторную модель, на первом шаге определяется уравнение регрессии с полным набором факторов и рассчитывается матрица частных коэффициентов корреляции. На втором шаге отбирается фактор с наименьшей и несущественной по -критерию Стьюдента величиной показателя частной корреляции. Исключив его из модели, строится новое уравнение регрессии. Процедура продолжается до тех пор, пока не окажется, что все частные коэффициенты корреляции существенно отличаются от нуля. Если исключен несущественный фактор, то множественные коэффициенты детерминации на двух смежных шагах построения регрессионной модели почти не отличаются друг от друга, , где – число факторов.
Из приведенных выше формул частных коэффициентов корреляции видна связь этих показателей с совокупным коэффициентом корреляции. Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент корреляции по формуле:
. (2.21)
В частности, для двухфакторного уравнения формула (2.21) принимает вид:
. (2.21)
При полной
зависимости результативного
Значимость
уравнения множественной
, (2.22)
где – факторная сумма квадратов на одну степень свободы;
– остаточная сумма квадратов на одну степень свободы;
– коэффициент (индекс) множественной детерминации;
– число параметров при переменных (в линейной регрессии совпадает с числом включенных в модель факторов);
– число наблюдений.
Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частный -критерий, т.е. .
Частный -критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора частный -критерий определится как
, (2.23)
где – коэффициент множественной детерминации для модели с полным набором факторов,
– тот же показатель, но
без включения в модель