Автор: Пользователь скрыл имя, 16 Декабря 2012 в 19:16, курсовая работа
Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.
Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.
Введение……………………………………………………………3 стр.
Теоретическая часть…………………………………………….. 4 стр.
Индексы и их классификация …………….……………………...4 стр.
Индивидуальные и общие индексы …………..………………….6 стр.
Агрегатные индексы…………………………………………8стр.
Средневзвешенные индексы……………………………… 13стр.
Базисные и цепные индексы………………………………………4стр.
Использование общих индексов в экономическом анализе……16стр.
Индексы средних величин и их использование в экономическом анализе…………………………………………………….……… 18стр.
3. Расчетная часть……………………………………………… ……11 стр.
4. Аналитическая часть……………………………………………. .16 стр.
5. Заключение ………………………………………………………. 25 стр.
6. Список литературы……………………………………………… 26 стр.
7. Приложения………………………………………………………. 27 стр.
В качестве соизмерителей
индексируемых величин
Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.
Пример.
Товар |
Ед. изм. |
I период |
II период |
Индивидуальные индексы | |||||
цена за единицу товара, руб.
|
кол-во
|
цена за единицу товара, руб. |
кол-во,
|
цен |
физич-го объёма
| ||||
А |
т |
20 |
7 500 |
25 |
9500 |
1,25 |
1,27 | ||
Б |
м |
30 |
2 000 |
30 |
2500 |
1,0 |
1,25 | ||
В |
шт. |
15 |
1 000 |
10 |
1500 |
0,67 |
1,5 |
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество — .
Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество — .
Индивидуальные индексы
При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение ,
сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.
Агрегатная формула такого общего индекса цен имеет следующий вид:
= (1)
Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.
знаменатель индексного отношения
= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.
Полученные значения подставляем в формулу 1:
= или 113,9%
Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.
При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.
В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:
= (2)
Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
= или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким образом, выполненные по формулам
1 и 2 расчёты имеют разные показания
индексов цен. Это объясняется тем,
что индексы Пааше и Ласпейреса
характеризуют различные
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При определении агрегатного
Агрегатная форма общего индекса имеет следующий вид:
= (3)
Поскольку, в числителе формулы
3 содержится сумма стоимости реализации
товаров в текущем периоде
по неизменным (базисным) ценам, а в
знаменателе — сумма
Используем формулу 3 для расчёта
агрегатного индекса
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического
объёма товарооборота может
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение формулы 4
показывает, что по данному ассортименту
товаров в целом прирост
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде ( — числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода ( — знаменатель).
Индексы с постоянными и переменными весами.
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III — cо II и IV — с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
2.2.2. Средневзвешенные индексы.
Помимо агрегатных индексов в статистике применяются средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс.
Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. Он должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая. Среднеарифметический индекс тождествен агрегатному, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного по формуле средней арифметической, будет равна агрегатному индексу.
Среднеарифметический индекс физического объема продукции вычисляется по формуле.
Ip= ∑iqpoqo/ ∑poqo = ∑q1po/ ∑qopo
Среднеарифметический индекс трудоемкости производства продукции определяется следующим образом:
It = ∑itTo/ ∑To=∑ittoqo/∑toqo
Поскольку it · to= t1, то формула этого индекса может быть преобразована в агрегатный индекс трудоемкости продукции. Весами являются общие затраты времени на производство продукции или численность работников в базисном периоде.
В статистике
широко известен и среднеарифме
Iv = ∑(∑qi/ ∑T1 : ∑qo/∑To)T1/T1= ∑iT1/∑T1
Индекс показывает, во сколько раз возросла (уменьшилась) производительность труда или сколько процентов составил рост (снижение) производительности труда в среднем по всем единицам исследуемой совокупности. Среднеарифметичексие индексы чаще всего применяются на практике для расчета сводных индексов количественных показателей.
Среднегармонический
индекс тождествен агрегатному,
I z = ∑z1 q1/ ∑z1 q1/ip = ∑p1q1/∑p0q1
Таким образом, весами при определении среднегармонического индекса себестоимости являются издержки производства текущего периода, а при расчете индекса цен стоимость продукции этого периода.
Цепные индексы:
Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.
Базисные индексы:
Частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.
Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.
Для индексов с переменными весами такое правило не сохраняется.
С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами – индексы цен, себестоимости, производительности труда.
Информация о работе Экономические индексы и их использование в экономическом анализе