Автор: Пользователь скрыл имя, 16 Февраля 2012 в 22:22, контрольная работа
Изучением систем занимаются системология, кибернетика, системный анализ, теория систем, термодинамика, ТРИЗ, системная динамика и другие научные дисциплины.
В системном анализе используют различные определения понятия «система»:
Система — множество взаимосвязанных элементов, обособленное от среды и взаимодействующее с ней, как целое.
Система — конечное множество функциональных элементов и отношений между ними, выделенное из среды в соответствии с определенной целью в рамках определенного временного интервала.
Система — отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания.
Система
Систе́ма (от др.-греч. σύστημα — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.
Термин «система» обозначает как реальные, так и абстрактные объекты и широко используется для образования других понятий, например банковская система, информационная система, кровеносная система, политическая система, система уравнений и др.
Любой неэлементарный объект можно рассмотреть как подсистему целого (к которому рассматриваемый объект относится), выделив в нём отдельные части и определив взаимодействия этих частей, служащих какой-либо функции.
Изучением систем занимаются системология, кибернетика, системный анализ, теория систем, термодинамика, ТРИЗ, системная динамика и другие научные дисциплины.
В системном анализе используют различные определения понятия «система»:
Известно
также большое число других определений
понятия «система», используемых в
зависимости от контекста, области
знаний и целей исследования.
Классификацией называется распределение некоторой совокупности объектов на классы по наиболее существенным признакам. Требования к построению классификации следующие:
в одной и той же классификации необходимо применять одно и то же основание;
объем элементов классифицируемой совокупности должен равняться объему элементов всех образованных классов;
члены классификации (образованные классы) должны взаимно исключать друг друга, то есть должны быть непересекающимися;
подразделение на классы (для многоступенчатых классификаций) должно быть
непрерывным, то есть при переходах с одного уровня иерархии на другой
необходимо
следующим классом для
иерархической структуре системы.
В соответствии с этими требованиями классификация систем
предусматривает деление их на два вида – абстрактные и материальные (рис. 1.7).
Материальные системы являются объектами реального времени. Среди всего многообразия материальных систем существуют естественные и искусственные системы.
Естественные системы представляют собой совокупность объектов природы, а искусственные системы – совокупность социально-экономических или технических объектов.
Естественные системы, в свою очередь, подразделяются на астрокосмические и планетарные, физические и химические.
Искусственные системы могут быть классифицированы по нескольким признакам, главным из которых является роль человека в системе. По этому признаку можно выделить два класса систем: технические и организационно-экономические системы.
В
основе функционирования технических
систем лежат процессы, совершаемые
машинами, а в основе функционирования
организационно-экономических
Абстрактные системы – это умозрительное представление образов или моделей материальных систем, которые подразделяются на описательные (логические) и символические (математические).
Логические системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определений (совокупность представлений) о структуре, об основных закономерностях состояний и о динамике материальных систем.
Символические системы представляют собой формализацию логических систем, они подразделяются на три класса:
статические математические системы или модели, которые можно рассматривать как описание средствами математического аппарата состояния материальных систем (уравнения состояния);
динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) систем;
квазистатические (квазидинамические ) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних взаимодействиях ведут себя как статические, а при других – как динамические.
Однако
в литературе существуют и другие
классификации систем. Ю.И.Черняк дает
следующее подразделение
Большие системы. Большие системы – это системы, не наблюдаемые единовременно с позиции одного наблюдателя либо во времени, либо в пространстве. Схема построения большой системы представлена на рис. 1.8.
Для того чтобы получить необходимые знания о большом объекте, наблюдатель последовательно рассматривает его по частям, строя его подсистемы. Далее он перемещается на более высокую ступень, на следующий уровень иерархии и, рассматривая подсистемы уже в качестве объектов, строит для них единую систему. Если совокупность подсистем оказывается снова слишком большой, чтобы можно было построить из них общую систему, то процедура повторяется, и наблюдатель переходит на следующий уровень иерархии и т.д.
Каждая из подсистем одного уровня описывается одним и тем же языком, а при переходе на следующий уровень наблюдатель использует уже метаязык, представляющий собой расширение языка первого уровня за счет средств описания свойств самого этого языка.
Если исследователь идет от наблюдения реального объекта, то большая система создается путем композиции – составлен ия ее и з малых подсистем, описываемых одним языком.
Операция, противоположная композиции, есть декомпозиция большой системы, то есть разбиение ее на подсистемы. Она осуществляется для того, чтобы извлечь новую ценную информацию из знания системы в целом, которая не может быть получена другим путем. Важным понятийным инструментом системного анализа является иерархия подсистем в большой системе. В иерархии экономических систем можно, например, выделить уровни: народное хозяйство, отрасль, подотрасль , предприятие, цех, бригада. Рассмотрение систем в иерархии дает возможность выявить новые их свойства.
Величина большой системы может быть измерена по разным критериям: по числу подсистем; по числу ступеней иерархии подсистем.
Сложные системы. Сложные системы – это системы, которые нельзя скомпоновать из некоторых подсистем. Это равноценно тому, что:
наблюдатель
последовательно меняет свою позицию
по отношению к объекту и
разные наблюдатели исследуют объект с разных сторон.
Пример 1.5. Решается задача выбора конкретного материала для промышленного изготовления ветрового стекла автомобиля. Задачу нельзя решить без того, чтобы не рассмотреть этот объект в самых разных аспектах и на разных языках: прозрачность и коэффициент преломления – язык оптики; прочность и упругость – язык физики; наличие станков и инструментов для изготовления – язык технологии; стоимость и рентабельность – язык экономики и т.д.
Каждый из наблюдателей отбирает подмножество прозрачных материалов, удовлетворяющих его требованиям и критериям. В области пересечения подмножеств, отобранных всеми наблюдателями, метанаблюдатель отбирает единственный материал, работая в метаязыке, объединяющем понятия всех языков низшего уровня и описывающем их свойства и отношения.
Принципиальная трудность решения задачи состоит в том, что подмножества, отобранные наблюдателями первого уровня, могут вообще не пересекаться. В таком случае метанаблюдателю придется потребовать снизить некоторым из наблюдателей свои требования и расширить подмножества потенциальных решений. В другом случае область пересечения может оказаться слишком большой, так что метанаблюдатель будет испытывать затруднения в выборе конкретного элемента. В первом случае встает вопрос: кому из наблюдателей первого уровня приказать снизить свои требования (оптику, физику, технологу, экономисту). Во втором случае – чьими требованиями и в какой степени руководствоваться в отборе конечного решения? Очевидно, что здесь не может существовать никаких строгих объективных правил отбора, а приходится прибегать к чисто человеческим процедурам социологического типа – опросу общественного мнения, выявлению мнений авторитетных экспертов в различных областях и приданию им количественных оценок. Подобные процедуры получения субъективных оценок представляют собой композицию сложной системы из комплекса моделей.
Противоположным случаем является декомпозиция сложной системы, когда критерий системы известен, но решение задачи достигается в результате решения каждой из подсистем своей собственной задачи в собственном языке. В этом случае приходится осуществлять декомпозицию критерия системы в критерии составляющих ее подсистем с одновременным переводом его в различные языки подсистем.
С
измерением сложности систем дело обстоит
так же, как и с измерением их
величины. Системы можно соизмерять
по степени сложности, используя
разные аспекты самого этого понятия:
путем соизмерения числа
Понятие сложности является одним из основополагающих в системном анализе. Системный анализ есть стратегия исследования, которая принимает сложность как существенное, неотъемлемое свойство объектов и показывает, как можно извлечь ценную информацию, подходя к ней с позиции сложных систем. По мнению американского исследователя Рассела Аккофа , простота не задается в начале исследования, но если ее вообще можно найти, то она находится в результате исследования.
Процесс построения сложной системы показан на рис. 1.9.
Итак,
сложная система – это система,
построенная для решения
Очевидно, что большие и сложные системы – это фактически два способа разложения задачи на ее составляющие или, соответственно, построения различным способом модели системы. Этот способ получил такое широкое распространение, что понятия цель и критерий в некоторых областях техники и исследования операций стали считать синонимами.
Также выше на примере больших и сложных систем были рассмотрены процедуры системного анализа – композиция и декомпозиция.
Динамические системы. Динамические системы – это постоянно изменяющиеся системы. Всякое изменение, происходящее в динамической системе, называется процессом. Его иногда определяют как преобразование входа в выход системы.