Технология выплавки стали

Автор: Пользователь скрыл имя, 29 Января 2013 в 17:59, контрольная работа

Краткое описание

Углеродистые стали. По содержанию углерода эти стали в свою очередь подразделяются на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую стали. Твердость углеродистых сталей возрастает с повышением содержания углерода. Например, низкоуглеродистая сталь является тягучей и ковкой. Ее используют в тех случаях, когда механическая нагрузка не имеет решающего значения. Различные применения углеродистых сталей указаны в таблице. На долю углеродистых сталей приходится до 90% всего объема производства стали.

Файлы: 1 файл

Технология выплавки стали.doc

— 441.00 Кб (Скачать)

Процесс занимает главенствующую роль среди существующих способов массового производства стали. Такой успех кислородно-конвертерного способа заключается в возможности переработки чугуна практически любого состава, использованием металлолома от 10 до 30 %, возможность выплавки широкого сортамента сталей, включая легированные, высокой производительностью, малыми затратами на строительство, большой гибкостью и качеством продукции за небольшой промежуток времени.

При конверторном способе производства, благодаря тому, что окисление  фосфора и серы идет одновременно имеется возможность остановить процесс на заданном содержании углерода и получить довольно широкую гамму углеродистых сталей при низком содержании серы и фосфора.

Кислородно-конвертерный процесс  с верхней продувкой.

Конвертер имеет грушевидную форму  с концентрической горловиной. Это обеспечивает лучшие условия для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих материалов. Кожух конвертера выполняют сварным из стальных листов толщиной от 20 до 100 мм. В центральной части конвертера крепят цапфы, соединяющиеся с устройством для наклона. Механизм поворота конвертера состоит из системы передач, связывающих цапфы с приводом. Конвертер может поворачиваться вокруг горизонтальной оси на 360о со скоростью от 0,01 до 2 об/мин. Для большегрузных конвертеров емкостью от 200 т применяют двухсторонний привод, например, четыре двигателя по два на каждую цапфу

Рис. 3. Конвертер емкостью 300 т с двухсторонним приводом механизма поворота

В шлемной части конвертера имеется  летка для выпуска стали. Выпуск стали через летку исключает  возможность попадания шлака  в металл. Летка закрывается огнеупорной  глиной, замешанной на воде.

Ход процесса. Процесс производства стали в кислородном конвертере состоит из следующих основных периодов: загрузки металлолома, заливки чугуна, продувки кислородом, загрузки шлакообразующих, слива стали и шлака.

Загрузка конвертера начинается с  завалки стального лома. Лом загружают в наклоненный конвертер через горловину при помощи завалочных машин лоткового типа. Затем с помощью заливочных кранов заливают жидкий чугун, конвертер устанавливают в вертикальное положение, вводят фурму и включают подачу кислорода с чистотой не менее 99,5 % О2. Одновременно с началом продувки загружают первую порцию шлакообразующих и железной руды (40 - 60 % от общего количества). Остальную часть сыпучих материалов подают в конвертер в процессе продувки одной или несколькими порциями, чаще всего 5 - 7 минут после начала продувки.

На процесс рафинирования значительное влияние оказывают положение  фурмы (расстояние от конца фурмы  до поверхности ванны) и давление подаваемого кислорода. Обычно высота фурмы поддерживается в пределах 1,0 - 3,0 м, давление кислорода 0,9 - 1,4 МПа. Правильно организованный режим продувки обеспечивает хорошую циркуляцию металла и его перемешивание со шлаком. Последнее, в свою очередь, способствует повышению скорости окисления содержащихся в чугуне C, Si, Mn, P.

Важным в технологии кислородно-конвертерного  процесса является шлакообразование. Шлакообразование в значительной мере определяет ход удаления фосфора, серы и других примесей, влияет на качество выплавляемой стали, выход годного  и качество футеровки. Основная цель этой стадии плавки заключается в быстром формировании шлака с необходимыми свойствами (основностью, жидкоподвижностью и т. д.). Сложность выполнения этой задачи связана с высокой скоростью процесса (длительность продувки 14 - 24 минуты). Формирование шлака необходимой основности и заданными свойствами зависит от скорости растворения извести в шлаке. На скорость растворения извести в шлаке влияют такие факторы, как состав шлака, его окисленность, условия смачивания шлаком поверхности извести, перемешивание ванны, температурный режим, состав чугуна и т. д. Раннему формированию основного шлака способствует наличие первичной реакционной зоны (поверхность соприкосновения струи кислорода с металлом) с температурой до 2500о. В этой зоне известь подвергается одновременному воздействию высокой температуры и шлака с повышенным содержанием оксидов железа. Количество вводимой на плавку извести определяется расчетом и зависит от состава чугуна и содержания SiO2 руде, боксите, извести и др. Общий расход извести составляет 5 - 8 % от массы плавки, расход боксита 0,5 - 2,0 %, плавикового штампа 0,15 - 1,0 %. Основность конечного шлака должна быть не менее 2,5.

Окисление всех примесей чугуна начинается с самого начала продувки. При этом наиболее интенсивно в начале продувки окисляется кремний и марганец. Это объясняется высоким сродством этих элементов к кислороду при сравнительно низких температурах (1450 - 1500о С и менее).

Окисление углерода в кислородно-конвертерном процессе имеет важное значение, т. к. влияет на температурный режим плавки, процесс шлакообразования и рафинирования металла от фосфора, серы, газов и неметаллических включений.

Характерной особенностью кислородно-конвертерного  производства является неравномерность  окисления углерода как по объему ванны, так и в течение продувки.

С первых минут продувки одновременно с окислением углерода начинается процесс  дефосфорации - удаление фосфора. Наиболее интенсивное удаление фосфора идет в первой половине продувки при сравнительно низкой температуры металла, высоком содержании в шлаке (FeO); основность шлака и его количество быстро увеличивается. Кислородно-конвертерный процесс позволяет получить < 0,02 % Р в готовой стали.

Условия для удаления серы при кислородно-конвертерном процессе нельзя считать таким же благоприятным, как для удаления фосфора. Причина заключается в том, что шлак содержит значительное количество (FeO) и высокая основность шлака (> 2,5) достигается лишь во второй половине продувки. Степень десульфурации при кислородно-конвертерном процессе находится в пределах 30 - 50 % и содержание серы в готовой стали составляет 0,02 - 0,04 %.

По достижении заданного содержания углерода дутые отключают, фурму  поднимают, конвертер наклоняют  и металл через летку (для уменьшения перемешивания металла и шлака) выливают в ковш.

Полученный металл содержит повышенное содержание кислорода, поэтому заключительной операцией плавки является раскисление  металла, которое проводят в сталеразливном ковше. Для этой цели одновременно со сливом стали по специальному поворотному желобу в ковш попадают раскислители и легирующие добавки.

Шлак из конвертера сливают через  горловину в шлаковый ковш, установленный  на шлаковозе под конвертером.

Течение кислородно-конвертерного  процесса обусловливается температурным  режимом и регулируется изменением количества дутья и введением в конвертер охладителей - металлолома, железной руды, известняка. Температура металла при выпуске из конвертера около 1600о С.

Во время продувки чугуна в конвертере образуется значительное количество отходящих  газов. Для использования тепла отходящих газов и отчистки их от пыли за каждым конвертером оборудованы котел-утилизатор и установка для очистки газов.

Управление конвертерным процессом  осуществляется с помощью современных  мощных компьютеров, в которые вводится информации об исходных материалах (состав и количество чугуна, лома, извести), а также о показателях процесса (количество и состав кислорода, отходящих газов, температура и т. п.).

Кислородно-конвертерный процесс  с донной продувкой.

В середине 60-х годов опытами по вдуванию струи кислорода, окруженной слоем углеводородов, была показана возможность через днище без разрушения огнеупоров. В настоящее время в мире работают несколько десятков конвертеров с донной продувкой садкой до 250 т. Каждая десятая тонна конвертерной стали, выплавленной в мире, приходится на этот процесс.

Основное отличие конвертеров  с донной продувкой от конвертеров  с верхним дутьем заключается  в том, что они имеют меньший  удельный объем, т. е. объем приходящийся на тонну продуваемого чугуна. В днище устанавливают от 7 до 21 фурм в зависимости от емкости конвертера. Размещение фурм в днище может быть различным. Обычно их располагают в одной половине днища так, чтобы при наклоне конвертера они были выше уровня жидкого металла. Перед установкой конвертера в вертикальное положение через фурмы пускается дутье.

В условиях донной продувки улучшаются условия перемешивания ванны, увеличивается  поверхность металл-зарождения и  выделения пузырьков СО. Таким  образом, скорость обезуглероживания  при донной продувке выше по сравнению с верхней. Получение металла с содержанием углерода менее 0,05 % не представляет затруднений.

Условия удаления серы при донной продувке более благоприятны, чем  при верхней. Это также связанно с меньшей окисленностью шлака  и увеличением поверхности контакта газ - металл. Последнее обстоятельство способствует удалению части серы в газовую фазу в виде SO2.

Преимущества процесса с донной продувкой состоят в повышении  выхода годного металла на 1 - 2 %, сокращении длительности продувки, ускорении плавления лома, меньшей высоте здания цеха и т. д. Это представляет определенный интерес, прежде всего, для возможной замены мартеновских печей без коренной реконструкции зданий мартеновских цехов.

Конвертерный процесс с комбинированной  продувкой.

Тщательный анализ преимуществ  и недостатков способов выплавки стали в конвертерах с верхней  и нижней продувкой привел к созданию процесса, в котором металл продувается  сверху кислородом и снизу - кислородом в защитной рубашке или аргоном (азотом). Использование конвертера с комбинированной продувкой по сравнению с продувкой только сверху позволяет повысить выход металла, увеличить долю лома, снизить расход ферросплавов, уменьшить расход кислорода, повысить качество стали за счет снижения содержания газов при продувке инертным газом в конце операции.

Мартеновский способ

Рис.5 Схема мартеновской печи

1,2,10,11-регенераторы, 3,9-канал для  газа, 4,8-канал для воздуха,

5-окна, 6-под, 7-пространство, 12,14-клапаны, 13-труба 

Мартеновская печь (рис. 5) представляет собой регенеративную пламенную  печь, высокая температура в которой (1750... 1800 °С) достигается за счет сгорания газа в плавильном пространстве. Газ  и воздух подогреваются в регенераторах. Слева от плавильного пространства 7 находятся каналы для газа 3 и воздуха 4, соединенные с регенераторами 1 и 2. Такие же каналы для газа 9 и воздуха 8 имеются справа от плавильного пространства 7; они соответственно соединены с регенераторами 10 и 11. Каждый из регенераторв имеет насадку из выложенного в клетку огнеупорного кирпича. Шихта загружается через окна 5.

Подаваемые в печь газ и воздух проходят через предварительно нагретые до температуры 1200... 1250 °С регенераторы 10 и 11, нагреваются в них и поступают в плавильное пространство печи. Здесь газ и воздух смешиваются и сгорают, образуя пламя высокой температуры. Продукты сгорания по каналам 3 и 4 поступают в регенераторы 1 и 2, нагревают их, охлаждаясь до 500...600 °С, и уходят в дымовую трубу 13. По мере охлаждения регенераторов 10 и 11 направление газа и воздуха в печи меняют на обратное переключением клапанов 12 и 14. Тогда газ и воздух поступают в плавильное пространство по каналам 3 и 4, пройдя нагретые регенераторы 1 и 2, а продукты сгорания выходят по каналам 8 и 9, нагревают насадку регенераторов 10 и 11 и уходят в трубу 13. Таким образом, газ и воздух при работе печи проходят через попеременно нагреваемые то левые, то правые регенераторы.

Мартеновские печи, работающие на мазуте, имеют с каждой стороны по одному регенератору для нагрева только воздуха.

В нашей стране эксплуатируются  мартеновские печи емкостью от 20 до 900 т жидкой стали. Важной характеристикой  этих печей является также площадь  пода 6. Для печи емкостью 900 т она составляет около 120 м2.

Показатели работы мартеновских печей: съем стали с 1 м2 пода печи в сутки  и расход топлива на тонну выплавленной стали. На отечественных заводах  съем стали составляет около 10 т/м2 в  сутки, а расход топлива при скрап-рудном процессе— 120... 180 и при скрап-процессе — 170... 250 кг/т.

Интенсификация мартеновского  производства достигается использованием печей большей емкости, хорошей  подготовки шихтовых материалов, автоматизации  процесса плавки. Повышению производительности печей и экономии топлива способствует применение кислородного дутья.

Сущность мартеновского процесса состоит в переработке чугуна и металлического лома на поду отражательной  печи. В мартеновском процессе в  отличие от конвертерного не достаточно тепла химических реакций и физического тепла шихтовых материалов. Для плавление твердых шихтовых материалов, для покрытия значительных тепловых потерь и нагрева стали до необходимых температур в печь подводиться дополнительное тепло, получаемое путем сжигания в рабочем пространстве топлива в струе воздуха, нагретого до высоких температур.

Для обеспечение максимального  использования подаваемого в  печь топлива (мазут или предварительно подогретые газы) необходимо, чтобы  процесс горения топлива заканчивался полностью в рабочем пространстве. В связи с этим в печь воздух подается в количестве, превышающем теоретически необходимое. Это создает в атмосфере печи избыток кислорода. Здесь также присутствует кислород, образующийся в результате разложения при высоких температурах углекислого газа и воды.

Таким образом, газовая атмосфера  печи имеет окислительный характер, т. е. в ней содержится избыточное количество кислорода. Благодаря этому  металл в мартеновской печи в течение  всей плавки подвергается прямому или косвенному воздействию окислительной атмосферы.

Для интенсификации горения топлива  в рабочем пространстве часть  воздуха идущего на горение, может  заменяться кислородом. Газообразный кислород может также подаваться непосредственно в ванну (аналогично продувке металла в конвертере).

В результате этого во время плавки происходит окисление железа и других элементов, содержащихся в шихте. Образующиеся при этом оксиды металлов FeO, Fe2O3, MnO, CaO, P2O5, SiO2 и др. Вместе с частицами  постепенно разрушаемой футеровки, примесями, вносимыми шихтой, образуют шлак. Шлак легче металла, поэтому он покрывает металл во все периоды плавки.

Шихтовые  материалы основного мартеновского  процесса состоят, как и при других сталеплавильных процессах, из металлической  части (чугун, металлический лом, раскислители, легирующие) и неметаллической части (железная руда, мартеновский агломерат, известняк, известь, боксит).

Информация о работе Технология выплавки стали