Технология выплавки стали

Автор: Пользователь скрыл имя, 29 Января 2013 в 17:59, контрольная работа

Краткое описание

Углеродистые стали. По содержанию углерода эти стали в свою очередь подразделяются на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую стали. Твердость углеродистых сталей возрастает с повышением содержания углерода. Например, низкоуглеродистая сталь является тягучей и ковкой. Ее используют в тех случаях, когда механическая нагрузка не имеет решающего значения. Различные применения углеродистых сталей указаны в таблице. На долю углеродистых сталей приходится до 90% всего объема производства стали.

Файлы: 1 файл

Технология выплавки стали.doc

— 441.00 Кб (Скачать)

Введение

Металлургическое производство возникло на заре развития человеческого общества. Такие металлы, как железо, медь, серебро, золото, ртуть, олово и свинец, нашли свое применение еще до нашей  эры.

Металлы относятся к числу наиболее распространенных материалов, которые человек использует для обеспечения своих жизненных потребностей. В наши дни трудно найти такую область производства, научно-технической деятельности человека или просто его быта, где металлы не играли бы главенствующей роли как конструкционный материал.

Металлы разделяют на несколько  групп: черные, цветные и благородные. К группе черных металлов относятся  железо и его сплавы, марганец и  хром. К цветным относятся почти  все остальные металлы периодической  системы Д. И. Менделеева.

Железо и его сплавы являются основой современной технологии и техники. Еще в середине 70х годов прошлого столетия академик Патон Б.Е. назвал двадцатый век «железным», не согласиться с ним невозможно. В ряду конструкционных металлов железо стоит на первом месте и не уступит его еще долгое время, несмотря на то, что цветные металлы, полимерные и керамические материалы находят все большее применение. Железо и его сплавы составляют более 90 % всех металлов, применяемых в современном производстве.

Самым важнейшим из сплавов железа является его сплав с углеродом. Углерод придает прочность сплавам железа. Эти сплавы образуют большую группу чугунов и сталей.

Современный высокий уровень металлургического  производства основан на глубоких теоретических  исследованиях, крупных открытиях, сделанных в разных странах мира, и богатом практическом опыте.

Развитие металлургии идет по пути дальнейшего совершенствования  плавки и разливки металла, механизации  и автоматизации производства, внедрения  новых прогрессивных способов работы, обеспечивающих улучшение технико-экономических показателей плавки и качества готовой продукции.

Украина сегодня занимает 7 место  в мире по производству стали.

Способы производства стали и их технико-экономические характеристики, пути повышения качества производимой стали и основные принципы размещения предприятий по ее производству я постараюсь раскрыть в этой работе.

Понятие «сталь» и ее классификации  и применение

Железо и его сплавы являются основой современной технологии и техники. В ряду конструкционных металлов железо стоит на первом месте и не уступит его еще долгое время, несмотря на то, что цветные металлы, полимерные и керамические материалы находят все большее применение. Железо и его сплавы составляют более 90 % всех металлов, применяемых в современном производстве.

Самым важнейшим из сплавов железа является его сплав с углеродом. Углерод придает прочность сплавам  железа. Эти сплавы образуют большую  группу чугунов и сталей.

Сталями называют сплавы железа с  углеродом, содержание которого не превышает 2,14 %. Сталь – важнейший конструкционный материал для машиностроения, транспорта и во многих других отраслях народного хозяйства.

Сталеплавильное производство – это  получение стали из чугуна и стального  лома в сталеплавильных агрегатах  металлургических заводов. Сталеплавильное производство является вторым звеном в общем производственном цикле черной металлургии. В современной металлургии основными способами выплавки стали являются кислородно-конвертерный, мартеновский и электросталеплавильный процессы. Соотношение между этими видами сталеплавильного производства меняется.

Сталеплавильный процесс является окислительным процессом, так как  сталь получается в результате окисления  и удаления большей части примеси  чугуна – углерода, кремния, марганца и фосфора. Отличительной особенностью сталеплавильных процессов является наличие окислительной атмосферы. Окисление примесей чугуна и других шихтовых материалов осуществляется кислородом, содержащимся в газах, оксидах железа и марганца. После окисления примесей, из металлического сплава удаляют растворенный в нем кислород, вводят легирующие элементы и получают сталь заданного химического состава.

Единой мировой классификации  сталей нет. В зависимости от способа  производства, химического состава, структуры, назначения и качества стали классифицируют:

По назначению: топочную и котельную, для железнодорожного транспорта (рельсовую, для бандажей железнодорожных колес  и т.п.), конструкционную (применяется  при изготовлении различных металлоконструкций для строительства зданий, мостов, различных машин и т.п.), шарикоподшипниковую, инструментальную ( для изготовления различных инструментов, резцов, валков прокатных станков, деталей кузнечно-штамповочного оборудования и т.п.), рессорно-пружинную, трансформаторную, нержавеющую, орудийную, трубную и др.

По качеству: обыкновенного качества, качественная, и высококачественная. Различия между этими группами заключаются  в допускаемом содержании вредных  примесей ( в первую очередь серы и фосфора), а также в особых требованиях по содержанию неметаллических включений и т.п. Например, в сталях обыкновенного качества содержание серы и фосфора допускается до 0,055-0,060%, в качественных сталях – не более 0,040-0,045%, в высококачественных – не более 0,020-0,030%.

По химическому составу: углеродистые (низкоуглеродистые содержат до 0.3% углерода;

среднеуглеродистые–от 0.3 до 0.6%; высокоуглеродистые – более 0.6%), легированные (низколегированные–до2.5% легирующих добавок; среднелегированные – 2.5-10%,высоколегированные – более 10%), в том числе хромистые, марганцовистые, хромоникелевые и т.п.

По характеру застывания стали  в изложницах: спокойные, кипящие  и полуспокойные. Поведение металла  при кристаллизации в изложницах зависит от степени его раскисленности – чем полнее раскислена сталь, тем спокойнее кристаллизуется слиток.

По способу производства: 1) по типу агрегата – конвертерная ( в том  числе кислородно-конверторная, бессемеровская, томасовская), мартеновская, электросталь, сталь электрошлакового переплава  и т.д.;

2) по технологии – основная и кислая мартеновская, основная и кислая электросталь, обработанная вакуумом, синтетическими шлаками, продувкой инертными газами и т.п.;

3) по состоянию – в твердом  состоянии (губчатое железо –  продукт прямого восстановления), в электролитическом – (продукт электролиза железосодержащих материалов), в порошкообразном ( продукт процессов распыления на мельчайшие капли жидкой стали), в тестообразном ( продукт сыродутного, кричного, пудлингового процессов, продукт процесса «Астон-Байерс»), в жидком, литом (продукт конверторного, мартеновского и т.п. процессов).

Применения в качестве конструкционных  материалов.

Некоторые d-элементы широко используются для изготовления конструкционных  материалов, главным образом в  виде сплавов. Сплав-это смесь (или  раствор) какого-либо металла с одним или несколькими другими элементами.

Сплавы, главной составной частью которых служит железо, называются сталями. Выше мы уже говорили, что  все стали подразделяются на два  типа: углеродистые и легированные.

Углеродистые стали. По содержанию углерода эти стали в свою очередь подразделяются на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую стали. Твердость углеродистых сталей возрастает с повышением содержания углерода. Например, низкоуглеродистая сталь является тягучей и ковкой. Ее используют в тех случаях, когда механическая нагрузка не имеет решающего значения. Различные применения углеродистых сталей указаны в таблице. На долю углеродистых сталей приходится до 90% всего объема производства стали.

Тип стали

Содержание углерода, %

Применения

Низкоуглеродистая

0,2

Общее машиностроение: корпуса автомашин, проволока, трубы, болты и гайки

Среднеуглеродистая

0,3-0,6

Балки и фермы, пружины

Высокоуглеродистая

0,6-1,5

Сверла, ножи, молотки, резцы


Легированные стали. Такие стали содержат до 50% примеси одного или нескольких металлов, чаще всего алюминия, хрома, кобальта, молибдена, никеля, титана, вольфрама и ванадия.

Нержавеющие стали содержат в качестве примесей к железу хром и никель. Эти примеси повышают твердость  стали и делают ее устойчивой к коррозии. Последнее свойство обусловлено образованием тонкого слоя оксида хрома (III) на поверхности стали.

Инструментальные стали подразделяются на вольфрамовые и марганцовистые. Добавление этих металлов повышает твердость, прочность и устойчивость при высоких температурах (жаропрочность) стали. Такие стали используются для бурения скважин, изготовления режущих кромок металлообрабатывающих инструментов и тех деталей машин, которые подвергаются большой механической нагрузке.

Кремнистые стали используются для изготовления различного электрооборудования: моторов, электрогенераторов и трансформаторов.

Основные способы производства стали

Шлаки сталеплавильных процессов.

Роль шлаков в процессе производства стали исключительно велика. Шлаковый режим, определяемый количеством и составами шлака, оказывает большое влияние на качество готовой стали, стойкость футеровки и производительность сталеплавильного агрегата. Шлак образуется в результате окисления составляющих части шихты, из оксидов футеровки печи, флюсов и руды. По свойствам шлакообразующие компоненты можно разделить на кислотные (SiO2; P2O5; TiO2; и др.), основные (CaO; MgO; FeO; MnO и др.) и амфотерные (Al2O3; Fe2O3; Cr2O3; и др.) оксиды. Важнейшими компонентами шлака, оказывающими основное влияние на его свойства, являются оксиды SiO2 и CaO.

Шлак выполняет несколько важных функций в процессе выплавки стали:

Связывает все оксиды (кроме СО), образующиеся в процессе окисления  примесей чугуна. Удаление таких примесей, как кремний, фосфор и сера, происходит только после их окисления и обязательного перехода в виде оксидов из металла в шлак. В связи с этим шлак должен быть надлежащим образом подготовлен для усвоения и удержания оксидов примесей;

Во многих сталеплавильных процессах  служит передатчиком кислорода из печной атмосферы к жидкому металлу;

В мартеновских и дуговых сталеплавильных  печах через шлак происходит передача тепла металлу;

Защищает металл от насыщения газами, содержащимися в атмосфере печи.

Изменяя состав шлака, можно отчищать металл от таких вредных примесей, как фосфор и сера, а также регулировать по ходу плавки содержание в металле марганца, хрома и некоторых других элементов.

Для того, чтобы шлак мог успешно  выполнять свои функции, он должен в  различные периоды сталеплавильного процесса иметь определенный химический состав и необходимую текучесть (величина обратная вязкости). Эти условия достигаются использованием в качестве шихтовых материалов плавки расчетных количеств шлакообразующих — известняка, извести, плавикового шпата, боксита и др.

Конвертерный способ

Производство стали в кислородных  конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива  путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии  в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее  время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой  сосуд 1 грушевидной формы из стального  листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в  него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры  изготовляют емкостью 100...350 т жидкого  чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м3.

Материалами для получения стали в кислородном  конвертере служат жидкий передельный  чугун и стальной лом. Для наводки  шлака в конвертер добавляют  железную руду и известь, а для  его разжижения — боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Изменение металла по ходу плавки показано (на рис. 2). При продувке происходит окисление  углерода и других примесей как непосредственно  кислородом дутья, так и оксидом  железа FeO. Одновременно образуется активный шлак с необходимым содержанием СаО, благодаря чему происходит удаление серы и фосфора с образованием устойчивых соединений P2O5- ЗСаО и CaS в шлаке.

В момент, когда  содержание углерода достигает заданного  для выплавляемой марки стали, подачу кислорода прекращают, конвертер поворачивают и выливают вначале сталь, а затем — шлак.

Для уменьшения содержания кислорода сталь при  выпуске из конвертера раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к. кислороду (Si, Mn, A1). Взаимодействуя с оксидом железа FeO, они образуют нерастворимые оксиды МпО, SiO2, А1203, переходящие в шлак.

Производительность  кислородного конвертера емкостью 300 т  достигает 400...500 т/ч, в то время как  производительность мартеновских и электропечей не превышает 80 т/ч. Благодаря высокой производительности и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.

   

Рис.1 Схема кислородного конвертера Рис.2 Схема изменения металла  по ходу плавки

Информация о работе Технология выплавки стали