Автор: Пользователь скрыл имя, 16 Декабря 2012 в 20:35, реферат
Алюминий повсюду - двести пятьдесят минералов содержат его. Но не из всякого минерала, не из всякой глины выгодно его добывать. Если одна десятая часть глины - алюминий, то возиться не стоит. Слишком дорого его освобождать. А вот если из двух килограммов глины можно добыть килограмм соединенного с кислородом алюминия - это другое дело. Такие глины (иногда и камни), богатые алюминием, есть. И у нас в стране их много. Они называются БОКСИТЫ
Из бокситов надо прежде всего извлечь окись алюминия. У окиси алюминия есть еще и другое название -- глинозем.
Технология производства алюминия
Как получают алюминий?
Алюминий повсюду - двести пятьдесят минералов содержат его. Но не из всякого минерала, не из всякой глины выгодно его добывать. Если одна десятая часть глины - алюминий, то возиться не стоит. Слишком дорого его освобождать. А вот если из двух килограммов глины можно добыть килограмм соединенного с кислородом алюминия - это другое дело. Такие глины (иногда и камни), богатые алюминием, есть. И у нас в стране их много. Они называются БОКСИТЫ
Из бокситов надо прежде всего извлечь окись алюминия. У окиси алюминия есть еще и другое название -- глинозем.
Некоторые виды глинозема вы знаете. Например, наждак, которым чистят ножи. Это крупинки на редкость твердого камня -- корунда. Им пользуются, чтобы натачивать стальные инструменты, ножи. А корунд -- это глинозем, окись алюминия.
Добывать из бокситов глинозем -- сложный и долгий труд. Его выполняют в химических цехах алюминиевых заводов. Но добыть глинозем -- это только полдела. Чтобы получить алюминий, надо еще выгнать из глинозема кислород. Для этого высыпают в сделанные из графита ванны расплав глинозема и пропускают сквозь него сильный электрический ток. Тока нужно очень много. Поэтому заводы для получения алюминия строят всегда около мощных электростанций.
Одна весьма сомнительная легенда рассказывает, что однажды к римскому императору Тиберию (42 г. до н. э. — 37 г. н. э.) пришел человек с металлической, небьющейся чашей. Материал чаши якобы был получен из глинозема (Al2O3) и, следовательно, должен был представлять собой алюминий. Опасаясь, что такой металл из глины может обесценить золото и серебро, Тиберий на всякий случай приказал отрубить человеку голову. Разумеется, этому рассказу трудно поверить: самородный алюминий в природе не встречается, а во времена Римской империи не могло быть технических средств, которые позволили бы извлечь алюминий из его соединений.
По распространенности в природе алюминий занимает первое место среди металлов; его содержание в земной коре составляет 7,45%. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов. В чистом виде алюминий не встречается вследствие своей высокой химической активности. Он преимущественно встречается в виде соединений с кислородом и кремнием – алюмосиликатов.
Рудами алюминия могут служить лишь породы, богатые глиноземом (Al2O3) и залегающие крупными массами на поверхности земли. К таким породам относятся бокситы, нефелины — (Na, K)2O ? Al2O 3 ? 2SiO2, алуниты — (Na, K)2SO4 ? Al2(SO4)3 ? 4Al(OH)3 и каолины (глины), полевой шпат (ортоклаз) — K2O ? Al2O3 ? 6SiO2.
Основной рудой для получения алюминия являются бокситы. Алюминий в них содержится в виде гидроокисей Al(OH), AlOOH, корунда Al2O3 и каолинита Al2O3 ? 2SiO2 ? 2H2O. Химический состав бокситов сложен: 28-70% глинозема; 0,5-20% кремнезема; 2-50% окиси железа; 0,1-10% окиси титана. В последнее время в качестве руды стали применять нефелины и алуниты.
Крупные месторождения бокситов находятся на Урале, в Тихвинском районе Ленинградской области, в Алтайском и Красноярском краях.
Нефелин (K ? Na2O ? Al2O3 ? 2SiO2) входит в состав апатитонефелиновых пород (на Кольском полуострове).
Впервые в свободном виде алюминий был выделен в 1825 г. датским физиком Эрстедом путем воздействия амальгамы калия на хлорид алюминия. В 1827г. немецкий химик Велер усовершенствовал способ Эрстеда, заменив амальгаму калия металлическим калием: AlCl3 + 3K > 3KCl + Al (Реакция протекает с выделением тепла).
В 1854 г. Сент-Клер Девиль во Франции впервые применил способ Велера для промышленного производства алюминия, использовав вместо калия более дешевый натрий, а вместо гигроскопичного хлорида алюминия — более стойкий двойной хлорид алюминия и натрия. В 1865 г. русский физико-химик Н. Н. Бекетов показал возможность вытеснения алюминия магнием из расплавленного криолита. Эта реакция в 1888 г. была использована для производства алюминия на первом немецком заводе в Гмелингене. Производство алюминия этими так называемыми «химическими» способами осуществлялось с 1854 г. по 1890 г. В течение 35 лет с помощью этих способов, было получено в общей сложности около 20 т алюминия.
В конце 80-х годов позапрошлого столетия химические способы вытеснил электролитический способ, который позволил резко снизить стоимость алюминия и создал предпосылки к быстрому развитию алюминиевой промышленности. Основоположники современного электролитического способа производства алюминия Эру во Франции и Холл в США независимо друг от друга подали в 1886 г. почти аналогичные заявки на патентование способа получения алюминия электролизом глинозема, растворенного в расплавленном криолите. С момента появления патентов Эру и Холла и начинается современная алюминиевая промышленность, которая более чем за 115 лет своего существования выросла в одну из крупнейших отраслей металлургии.
Технологический процесс получения алюминия состоит из трех основных стадий:
1). Получение глинозема (Al2O3) из алюминиевых руд;
2). Получение алюминия из глинозема;
3). Рафинирование алюминия.
Получение глинозема из руд.
Глинозем получают тремя способами: щелочным, кислотным и электролитическим. Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5-6%) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рис. 1.
Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169-170оС может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:
1). Подготовки боксита,
заключающийся в его дроблении
и измельчении в мельницах;
в мельницы подают боксит, едкую
щелочь и небольшое количество
извести, которое улучшает
2). Выщелачивания боксита
(в последнее время
AlOOH+NaOH → NaAlO2+H2O
или
Al(OH)3+NaOH → NaAlO2+2H2O;
содержащийся
в боксите кремнезем
SiO2+2NaOH → Na2SiO3+H2O;
в растворе алюминат
натрия и силикат натрия образуют
нерастворимый натриевый
3). Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6-1,0 т красного шлама (сухого остатка);
4). Разложения
алюминатного раствора. Его фильтруют
и перекачивают в большие
Na2O ּ Al2O3+4H2O → Al(OH)3+2NaOH;
5). Выделения
гидроокиси алюминия и ее
6). Обезвоживания
гидроокиси алюминия (кальцинации);
это завершающая операция
Al(OH)3 → AlOOH → γ-Al2O3 → α-Al2O3
В окончательно
прокаленном глиноземе
Этим способом извлекается 85-87% от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 оС.
Получение алюминия из его окиси
Электролиз окиси алюминия
Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970°С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рис. 2). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись углерода (CO) или двуокись углерода (CO2). На практике находят применение два типа анодов:
а) самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25-35% каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
б) обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900×600×500 мм массой около 1,1 т).
Сила тока на электролизерах составляет 150 000 А. Они включаются в сеть последовательно, т. е. получается система (серия) — длинный ряд электролизеров.
Рабочее напряжение на ванне, составляющее 4-5 В, значительно выше напряжения, при котором происходит разложение окиси алюминия, поскольку в процессе работы неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рис. 3.
Электролиз хлорида алюминия (метод фирмы Алкоа)
В реакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl3, растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и подается для вторичного использования; алюминий осаждается на катоде.
Преимуществами данного метода перед существующим электролизом жидкого криолитоглиноземного расплава (Al2O3, растворенная в криолите Na3AlF6) считают: экономию до 30% энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al2O3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора.
Восстановление хлорида алюминия марганцем (Toth — метод)
При восстановлении марганцем из хлорида алюминия освобождается алюминий. Посредством управляемой конденсации из потока хлорида марганца выделяются связанные с хлором загрязнения. При освобождении хлора хлорид марганца окисляется в окись марганца, которая затем восстанавливается до марганца, пригодного к вторичному применению. Сведения в имеющихся публикациях весьма неточны, так что в данном случае придется отказаться от оценки метода.
Получение рафинированного алюминия
Для алюминия рафинирующий электролиз с разложением водных солевых растворов невозможен. Поскольку для некоторых целей степень очистки промышленного алюминия (Al 99,5 — Al 99,8), полученного электролизом криолитоглиноземного расплава, недостаточна, то из промышленного алюминия или отходов металла путем рафинирования получают еще более чистый алюминий (Al 99, 99 R). Наиболее известен метод рафинирования — трехслойный электролиз.
Рафинирование методом трехслойного электролиза
Одетая стальным листом, работающая на постоянном токе (представленная на рис. 4) ванна для рафинирования состоит из угольной подины с токоподводами и теплоизолирующей магнезитовой футеровки. В противоположность электролизу криолитоглиноземного расплава анодом здесь служит, как правило, расплавленный рафинируемый металл (нижний анодный слой). Электролит составляется из чистых фторидов или смеси хлорида бария и фторидов алюминия и натрия (средний слой). Алюминий, растворяющийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.
Ванна работает при 750-800°С, расход электроэнергии составляет 20 кВт ּ ч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.