Автор: Пользователь скрыл имя, 02 Апреля 2013 в 17:13, реферат
Металлы и их сплавы повсеместно используются для изготовления конструкций машин, оборудования, инструмента и т. д. Несмотря на широкий круг искусственно созданных материалов (керамики, клеев), металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать.
3 Цветные металлы и сплавы
Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.
3.1 Алюминий и алюминиевые сплавы
Алюми́ний — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).
Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.
Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин).
Алюминиевый сплав — сплав, основной массовой частью которого является алюминий. Самыми распространенными элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Все алюминиевые сплавы можно разделить на две основные группы: термически обработанные и термически не обработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки.
3.1.1 Деформируемые алюминиевые сплавы
Деформируемые алюминиевые
сплавы применяют для получения
листов, ленты, фасонных профилей, проволоки
и различных деталей
Деформируемые сплавы разделяют на сплавы, упрочняемые и неупрочняемые термической обработкой. Деформируемые сплавы, подвергаемые механической и термической обработке, имеют буквенные обозначения, указывающие на характер обработки (см. примечания к табл. 9).
Термически неупрочняемые сплавы — это сплавы алюминия с марганцем (АМц) и алюминия с магнием и марганцем (АМг). Они обладают умеренной прочностью, высокой коррозионной стойкостью, хорошей свариваемостью и пластичностью (табл. 9).
Термически упрочняемые сплавы (см. табл.) приобретают высокие механические свойства и хорошую сопротивляемость коррозии только в результате термической обработки. Наиболее распространены сплавы алюминия с медью, магнием, марганцем (дюралюмины) и алюминия с медью, магнием, марганцем и цинком (сплавы высокой прочности).
Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном или искусственном старении. Для закалки сплавы нагревают до 500°С и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5—7 сут. Искусственное старение проводят при 150 —180°С в течение 2—4 ч.
Марка |
Толщина листов, мм |
Предел прочности при растяжении, σв МПа |
Относительное удлинение, δ % |
Назначение |
Термически неупрочняемые | ||||
АМцМ АМг2М АМг2Н АМг3М |
0,5-10 0,5-10 0,5-10 0,8-10 |
90 170 270 190-200 |
18-22 16-18 3-4 15 |
Малонагруженные де тали, сварные и клепаные конструкции, детали, получаемые глубокой вытяжкой |
АМг5М |
0,8-10 |
280 |
15 |
Средненагруженные детали сварных и клепаных конструкций, конструкций с высокой коррозионной стойкостью |
Термически упрочняемые | ||||
Д1А |
5-10,5 |
360 |
12 |
Детали и конструкции средней прочности |
Д16А Д16АТ |
5-10,5 5-10,5 |
420 435 |
10 11 |
Детали и конструкции повышенной прочности, работающие при переменных нагрузках |
В95А |
5-10,5 |
500 |
6 |
Детали нагружаемых конструкций, работающие при температуре до 100°С. |
Примечания:
При одинаковой прочности дюралюмины, подвергнутые естественному старению, более пластичны и коррозионностойки, чем подвергнутые искусственному старению. Особенностью нагрева алюминиевых сплавов при закалке является строгое поддержание температуры (±5°), чтобы не допустить пережога и достичь наибольшего эффекта термической обработки.
Дюралюмины не обладают необходимой коррозионной стойкостью, поэтому их подвергают плакированию. Дюралюмины выпускают в виде листов, прессованных и катаных профилей, прутков, труб. Особенно широко применяют дюралюмины в авиационной .промышленности и строительстве
3.1.2 Литейные алюминиевые сплавы
Литейные сплавы содержат
почти те же легирующие компоненты,
что и деформируемые сплавы, но
в значительно большем
Алюминиевые литейные сплавы маркируют буквами АЛ и цифрой, указывающей условный номер сплава. Сплавы на основе алюминия и кремния называют силуминами. Силумины обладают высокими механическими и литейными свойствами: высокой жидкотекучестью, небольшой усадкой, достаточно высокой прочностью и удовлетворительной пластичностью. Сплавы на основе алюминия и магния имеют высокую удельную прочность, хорошо обрабатываются резанием и имеют высокую коррозионную стойкость. Свойства алюминиевых литейных сплавов существенно зависят от способа литья и вида термической обработки. Важное значение при литье имеет скорость охлаждения затвердевающей отливки или скорость охлаждения при ее закалке. В общем случае увеличение скорости отвода тепла вызывает повышение прочностных свойств. Поэтому механические свойства отливок при литье в кокиль (металлические литейные формы) выше, чем при литье в песчано-глинистые формы (см. табл.). Литейные алюминиевые сплавы имеют более грубую и крупнозернистую структуру, чем деформируемые. Это определяет режимы их термической обработки. Для закалки силумины нагревают до температуры 520—540°С и дают длительную выдержку (5—10 ч), для того чтобы полнее растворить включения. Искусственное старение проводят при 150—180°С в течение 10—20 ч.Для улучшения механических свойств силумины, содержащие более 5% кремния, модифицируют натрием. Для этого в расплав добавляют 1—3% от массы сплава соли натрия (2/3 NaF + 1/3 NaCl). При этом снижается температура кристаллизации сплава и измельчается его структура.
Марка |
Способы литья |
Вид термической обработки |
Предел прочности при растяжении, σв МПа |
Твердость, HB |
Назначение |
АЛ2 |
зм, вм, км, к, д зм, вм, км, к, д |
—
Отжиг |
150-160
140-150 |
50
50 |
Малонагруженные детали (корпуса приборов, кронштейны и т. и.) |
АЛ4 |
з, в, к, д к, д зм, вм, к |
— Старение Закалка и полное старение |
150 200 230 |
50 70 70 |
Крупные нагруженные детали (корпуса компрессоров, картеров, блоков) |
АЛ9 |
з, в, к, д з, в, к, д з, в зм, вм
|
— Отжиг Закалка Закалка и полное старение |
170 140 180
|
50 45 50
|
Детали средней нагруженности сложной конфигурации (головки цилиндров, поршни, картеры сцепления и т. п.) |
АЛ10В |
к, з |
Старение |
150-170 |
80-90 |
Детали, работающие при повышенных температурах |
АЛ8 |
з, в, к |
Закалка |
290 |
60 |
Детали высоконагруженные, воспринимающие вибрационные нагрузки |
Примечания:
В графе Способы литья введены следующие обозначения:
3 - в песчано-глинистые формы;
В - по выплавляемым моделям;
К - кокиль;
Д - под давлением;
буква М, следующая за первой, обозначает, что сплав при литье подвергают модифицированию
3.2 Медь и медные сплавы
Медь — элемент одиннадцатой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.
Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты.
Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.