Доменная печь

Автор: Пользователь скрыл имя, 07 Февраля 2013 в 10:07, курсовая работа

Краткое описание

Главным процессом производства стали и чугуна в настоящее время является доменный процесс, а наиважнейшим компонентом этого процесса является доменная печь.Доменная печь является мощным и высоко производительным агрегатом, в котором расходуется огромное количество шихты и дутья.

Оглавление

Введение - 3
1. Загрузка шихты и распределение материалов на колошнике. - 4
2. Распределение температур, удаление влаги и разложение карбонатов.- 8
3. Процессы восстановления. - 11
4. Образование чугуна. - 22
5. Образование шлака и его свойства. - 24
6. Дутьё, процессы в горне и движение газов в печи. - 27
7. Интенсификация доменного процесса. - 34
8. Продукты доменной плавки. - 40
9. Управление процессом, контроль, автоматизация. - 43
Заключение - 46
Список использованной литературы. - 47

Файлы: 1 файл

Металлургия.doc

— 226.00 Кб (Скачать)

Таким образом, повышение  давления газа в печи позволяет форсировать доменный процесс. Кроме того, вследствие увеличения времени пребывания газа в печи и улучшения распределения его сокращается расход кокса, а уменьшение скорости газа на колошнике приводит к снижению выноса пыли. Это позволило увеличить производительность печей на 5 – 15 %, снизить расход кокса на 3 – 5 % и сократить вынос пыли на 20 – 50 %, более 24 – 26 %, а в сочетании с вдуванием углеводородов до 30 – 35 %. Такое ограничение содержания кислорода в обогащенном дутье объясняется тем, что его применение сопровождается как положительными, так и отрицательными последствиями для доменного процесса.

 Вдувание в горн  углеродсодержащих веществ с целью снижения расхода дорогого и дефицитного кокса в последние годы на всех печах в горн вдувают газообразные или жидкие углеводороды и иногда измельченный уголь. Их подают через фурмы в зоны горения кокса. Наиболее широко применяется природный газ.

Вдувание природного газа. При попадании в горн природного газа, основу которого составляет метан СН4, происходит неполное сгорание метана с образованием СО и Н2:

СН4 + 0,502 = СО + 2Н2 + 37250 Дж.

При этом, помимо экономии кокса как топлива (замены части кокса природным газом), обеспечивается значительное повышение степени косвенного восстановления за счет участия в нем образующегося водорода, содержание которого в горновом газе возрастает до 8 – 15 % и более. Это увеличение доли косвенного восстановления и снижение тем самым доли прямого также ведет к снижению расхода кокса. Положительным является также то, что благодаря снижению расхода кокса уменьшается количество серы, вносимой коксом, и уменьшается выход шлака в связи с уменьшением количества поступающей в печь золы кокса.

Вместе с тем, вдувание природного газа отрицательно влияет на тепловые и газодинамические условия работы печи. Дело в том, что при попадании природного газа в горни его неполном сгорании увеличивается объем горновых газов (продуктов сгорания) и снижается температура в зоне горения и в горне.

Для поддержания прежнего нормального теплового состояния горна при вдувании природного газа увеличивают, если это возможно, температуру дутья с учетом того, что добавка 1 м3 газа на 1 т чугуна требует повышения температуры дутья на 4 0С; уменьшают также влажность дутья, что ведет к росту температур в горне. Увеличение объема горновых газов вызывает рост скорости движения газов в печи и, соответственно, величины перепада давления между горном и колошником. Поэтому после повышения расхода природного газа до определенного уровня начинаются нарушения ровного схода шихты. Если печь работала на предельном количестве дутья, то, начиная вдувание природного газа, снижают расход дутья с целью сохранения условий нормального опускания шихты. Таким образом, нарушение газодинамических условий в печи и снижение температуры горна ограничивают количество вдуваемого природного газа. Лучшим способом преодоления отрицательных последствий применения природного газа является добавка к дутью кислорода.

При расходе  природного газа в количестве 60 – 90 м3/т чугуна (3,5 – 4 % от объема дутья) экономия кокса составляет 8 – 14 % и более. Коэффициент замены кокса природным газом, т.е. отношение количества выведенного из шихты кокса (кг/т чугуна) к количеству использованного природного газа (м3/т чугуна) составляет 0,7 – 1,0 кг/м3.

 

8. Продукты доменной плавки.

 

Конечными продуктами доменной плавки являются чугун и шлак, выпускаемые  из доменной печи в огненно-жидком виде, и доменный газ. Чугун является основным продуктом доменного производства, а шлак и доменный газ – побочными.

Виды, состав и назначение доменных чугyнов. Цель доменного производства состоит в получении чугуна, представляющего собой много компонентный сплав железа с углеродом, кремнием, марганцем, фосфором и серой. В зависимости от назначения чугуна и от состава проплавляемых шихтовых материалов в нем может содержаться, кроме того, еще хром, никель, ванадий, титан, медь и мышьяк. Содержание основных элементов (С, Si, Мn, Р, S, Cr, Ni, Cu, As) в чугуне регламентируется соответствующим стандартом или техническими условиями.

Состав чугуна, получаемый в ходе доменной плавки, определяется требованиями потребителей и возможностями доменной плавки. Сообразно с этим стремятся подобрать состав шихтовых материалов и технологический режим плавки.

Все доменные чугуны по своему назначению подразделяют на три основных вида:

- передельный, предназначенный для дальнейшего передела в сталь;

- литейный, используемый после переплава в чугуноплавильных цехах для отливки чугунных изделий;

- доменные ферросплавы - в основном ферромарганец, используемый в сталеплавильном производстве в качестве добавки в жидкую сталь для ее раскисления и легирования.

Передельный чугун является преобладающим видом продукции доменного производства. На его долю приходится около90 % общего производства чугуна. Он используется в качестве шихтового материала при производстве стали в конвертерах, мартеновских и электродуговых печах. Передельный чугун в соответствии с существующими стандартами может содержать 0,3 – 1,2 % Si, 0,15 – 1,0 (иногда до 1,5 %) Мn и делится на три класса по содержанию фосфора (не более0,1; 0,2 и 0,3 %) и на пять категорий по содержанию серы(не более 0,01; 0,02; 0,03; 0,04 и 0,05 %). С целью экономии дефицитного марганца в настоящее время, выплавляют маломарганцовистые чугуны с содержанием марганца 0,1 – 0,5 %.

В небольших количествах  выплавляют высококачественный передельный  чугун, маркируемый буквами ПВК, что означает передельный высококачественный коксовый. Он отличается от обычного передельного пониженным содержанием фосфора (<=0,02 – 0,05 %) и серы (<=0,015 – 0,025 %). На заводах, использующих высокофосфористые железные руды, выплавляют чугуны с повышенным содержанием фосфора; стандартом предусмотрены три марки подобных чугунов, различающихся coдержанием фосфора (0,3 – 0,7; 0,7 – 1,5 и 1,5 – 2,0 % Р). Эти чугуны перерабатывают в сталь по специально приспособленной для этого технологии (в кислородных конвертерах и мартеновских печах) с получением помимо стали фосфатных шлаков.

Содержание  углерода в передельном чугуне стандартами не нормируется, поскольку оно определяется содержанием других элементов; его можно приближенно определить по формуле:

С = 4,8 + 0,03 Мn – 0,27 Si – 0,32 Р – 0,032 S,

 где Мn, Si, Р и S – соответственно содержание в чугуне марганца, кремния, фосфора и серы. В малофосфористых ( 0,3 % Р) чугунах обычно содержится 4,0 – 4,8 % углерода.

Литейный  чугун отличается от передельного повышенным содержанием кремния и в некоторых марках - фосфора. Шесть марок литейного чугуна (Л1 – Л6) содержат от 1,2 – 1,6 до 3,2 – 3,6 % Si и от 0,3 до 0,9 – 1,5,% Мn; каждую марку делят на четыре категории по содержанию серы (0,02 – 0,05 %) и на пять классов по содержанию фосфора (соответственно < 0,08; < 0,12; < 0,3; 0,3 – 0,7 и 0,7 – 1,2 % Р). Фосфор придает металлу хрупкость, поэтому отливки ответственного назначения делают из чугунов с низким содержанием фосфора. Высокофосфористые чугуны используют для получения художественного литья в связи с тем, что жидкий чугун с высоким содержанием фосфора обладает высокой жидкой текучестью и поэтому хорошо заполняет литейные формы самой сложной конфигурации.

Основными составляющими  шлака являются оксиды кремния (Si02), кальция (СаО), алюминия (АI2Оз). магния (MgO), а также небольшое количество НеО, МnO, CaS. В шлаках обычно содержится 6 – 20 % глинозема (A1203, 38 – 42 % кремнезема (Si02), 38 – 48 % известно (СаО), 2 – 12 % магнезии (MgO); 0,2 – 0,6 % FеО; 0,1 – 2 % МnO и 0,6 – 2,5 % серы, в основном, в виде CaS. При этом шлаки характеризуются следующими значениями основности: СаО: Si02 = 0,9+1,3; (СаО + MgO): :Si02 = 1,05+1,45 и (Са О + MgO):(Si02 + Al203 =

 = 0,7+1,2. %) доменного шлака перерабатывают, получая сырье для производства различных строительных материалов.

Доменный (колошниковый) газ. Газ, выходящий из печи через ее верхнюю часть - колошник, называют колошниковым. Он состоит из СО, СН., N2, СО2 и N2. После очистки от содержащейся в нем пыли, газ используют как топливо для нагрева насадок воздухонагревателей, стальных слитков, коксовых батарей, отопления котлов и других целей. Горючими компонентами в газе являются СО, N2 и СH.. Зная энтальпию химических реакций, горения этих компонентов, можно подсчитан., что при полном сгорании каждого процента оксида углерода теплота сгорания 1 мЗ газа повышается на126 кДж, а каждого процента водорода и метана соответственно на 108 и 263 кДж. При выплавке передельного чугуна на атмосферном дутье (без вдувания природного газа) в газе содержится 12 – 18 % СО2; 24 – 30 % СО; 0,2 – 0,5 % СH.; 1,0 – 2,0 % N2 и 55 – 59 % N2 и теплота сгорания газа составляет 3500 – 4000 кДж/мЗ. При применении комбинированного дутья снижается содержание азота и соответственно возрастает количество других составляющих газа, особенно водорода. Например, при обогащении дутья кислородом до24 – 30 % и соответствующей подаче природного газа содержание оксида углерода составляет 22 – 27 %, диоксида углерода15 – 22 %, водорода 8 – 11 % и азота 43 – 55 %. Теплота сгорания такого газа равна 4200 – 5000 кДж/мЗ.

 

 

9. Управление процессом, контроль, автоматизация

 

Управление ходом доменной плавки сводится к контролю основных пара метров технологического режима и при их отклонении от заданных значений - к выработке и осуществлению регулирующих воздействий, ведущих к ликвидации этих отклонений и нарушений. В процессе управления работой печи приходится изменять температуру и количество дутья, количество подаваемого природного газа, соотношение между железорудными материалами и коксом, расход флюса, параметры загрузки шихты. Различают регулирование хода доменной печи сверху (изменение системы загрузки, величины подачи, уровня засыпи и т.п.) и регулирование снизу (изменение параметров комбинированного дутья).

Часть управляющих и  регулирующих воздействий осуществляется персоналом вручную, а часть с помощью автоматизированных регулирующих или управляющих систем. При ручном управлении и регулировании правильность принятых решений зависит от квалификации и опыта мастера-технолога, при автоматизированном - от того, насколько заложенная в ЭВМ математическая модель адекватно отражает сложные взаимозависимости параметров доменного процесса и от надежности показаний контрольных приборов.

Старые печи наряду с  ручным управлением оборудованы  системой автоматизированного управления работой загрузочных устройств по заданному режиму и рядом локальных систем автоматического регулирования и стабилизации отдельных параметров процесса. Обычно это стабилизация давления под колошником, управление работой воздухонагревателей, стабилизация параметров комбинированного дутья (расход дутья, его температура, содержание кислорода в дутье, соотношение расходов природного газа и воздуха с учетом концентрации кислорода в дутье, распределение природного газа по фурмам).

Современные доменные печи оборудуют автоматизированными системами управления (АСУ ТП), обеспечивающими величину уровня автоматизации управления доменным процессом до 70 и в отдельных случаях до 90 %. Такие АСУ ТП выполняют в виде иерархической системы, включающей несколько(три-четыре) уровней автоматизации.     Первый иерархический

     Работа доменной печи регламентируется теологическим режимом, основными составляющими которого являются: дутьевой режим, режим загрузки, шлаковый режим и тепловой режим, причем эти параметры тесно взаимно связаны. Технологический режим, вырабатываемый на основании обобщения многолетнего опыта работы печей, зависит от условий плавки конкретного цеха и отдельной доменной печи.

Основой для соблюдения технологического режима и выработки регулирующих и управляющих воздействий на процесс служат показания контроль но-измерительных устройств, значительная часть которых работает в автоматическом режиме. На современных доменных печах контролируют до 170 параметров, характеризующих технологический режим, состояние печи и вспомогательного оборудования.

 Контролируемыми параметрами являются: состав и свойства шихтовых материалов, жидкого чугуна и шлака; параметры дутья и колошникового газа (состав, давление, расход, температура и др.); распределение температур и состава газа по сечению и высоте печи; параметры загрузки (масса и количество порций в подаче и порядок их загрузки, работа конусов или лотковых загрузочных устройств, уровень и профиль засыпи, скорость схода шихты и др.); статическое давление в печи высоте и перепады давления; вынос колошниковой пыли; температура кладки шахты, горна и лещади; работа холодильников; боковое давление шихты в печи; параметры работы воздухонагревателей и воздуходувных машин и др. Наряду с давно применяемыми обычными приборами и датчиками контроля (термопары, расходомеры, манометры и т.п.) внедряют новые специальные приборы и устройства: горизонтальные зонды, перемещаемые ниже уровня за сыпи для контроля здесь состава и температуры газов; стационарные зонды-балки для контроля тех же параметров выше уровня засыпи; лазерные, микроволновые, гамма и рентгеноимпульсные профиле меры для измерения профиля засыпи; микроволновые и радиометрические уровнемеры засыпи; устройства непрерывного контроля параметров жидких продуктов плавки в горне; встроенные в фурмы термодатчики; вертикально перемещаемые в слое шихты зонды и другие устройства для контроля уровня зоны плавления шихты в печи; автоматические рентгеноспектраль уровне включает средства автоматического контроля, измерения и диагностики входных, технологических и выходных параметров доменной плавки и работы оборудования печи; второй уровень локальные подсистемы стабилизации и регулирования отдельных параметров процесса и работы оборудования (давления под колошником, параметров дутья, параметров работы воздухонагревателей и др.); третий уровень- подсистемы управления отдельными технологическими процессами и агрегатами (такими процессами как шихтовка и загрузка, подготовка и подача дутья в печь, распределение газового потока, тепловой режим и др.). На высшем уровне, который пока не реализован, АСУ должна оптимизировать и согласовывать работу всех подсистем в соответствии с плановыми заданиями.

Помимо функций контроля, регулирования и управления процессами и агрегатами АСУ обеспечивает в  центральном пункте управления печью непрерывное представление значений технологических параметров в цифровой форме, путем световой индикации и в виде графиков на диаграммных самопишущих приборах и на экранах дисплеев, а также световую и звуковую сигнализацию нарушений нормального технологического режима и работы оборудования. Обеспечивается также заполнение отчетных документов.

 

 

Заключение

Информация о работе Доменная печь