Нулевая и альтернативная гипотеза. Ошибки 1 и 2 рода

Автор: Пользователь скрыл имя, 25 Октября 2012 в 17:39, реферат

Краткое описание

Гипотеза в статистике — есть некое научное предположение, которое необходимо проверить и далее принять или отвергнуть.
Статистической гипотезой называют предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Её обозначают буквой Н (от латинского слова hypothesis).

Оглавление

1.Введение.
А) Гипотеза в статистике
Б) Простая и нулевая гипотеза
В) Альтернативная гипотеза в статистике
Г) Статистический критерий
Д) Критическая область и область допустимых значений
2. Понятие нулевой и альтернативной гипотезы.
3. Проверка статистических гипотез
А) Этапы проверки статистических гипотез
Б) Сущность задачи проверки статистических гипотез
В) Типовые распределения
Г) Проверка гипотез о законе распределения
4. Ошибки 1 и 2 рода
5.Вывод
6.Литература

Файлы: 1 файл

ОШИБКИ 1 И 2 РОДА.docx

— 156.79 Кб (Скачать)

Соответственно, ошибку второго рода иногда называют пропуском события или ложноотрицательным срабатыванием — человек болен, но анализ крови этого не показал, или у пассажира имеется холодное оружие, но рамка металлодетектора его не обнаружила (например, из-за того, что чувствительность рамки отрегулирована на обнаружение только очень массивных металлических предметов).

Слово «отрицательный» в  данном случае не имеет отношения  к желательности или нежелательности  самого события.

Термин широко используется в медицине. Например, тесты, предназначенные  для диагностики заболеваний, иногда дают отрицательный результат (т.е. показывают отсутствие заболевания  у пациента), когда на самом деле пациент страдает этим заболеванием. Такой результат называется ложноотрицательным.

В других областях обычно используют словосочетания со схожим смыслом, например, «пропуск события», и т.п. В информационных технологиях часто используют английский термин false negative без перевода.

Степень чувствительности системы  защиты должна представлять собой компромисс между вероятностью ошибок первого  и второго рода. Где именно находится  точка баланса, зависит от оценки рисков обоих видов ошибок.

Вероятности ошибок (уровень значимости и мощность)

Вероятность ошибки первого  рода при проверке статистических гипотез называют уровнем значимости и обычно обозначают греческой буквой   (отсюда название  -errors).

Вероятность ошибки второго  рода не имеет какого-то особого  общепринятого названия, на письме обозначается греческой буквой   (отсюда  -errors). Однако с этой величиной тесно связана другая, имеющая большое статистическое значение —мощность критерия. Она вычисляется по формуле  . Таким образом, чем выше мощность, тем меньше вероятность совершить ошибку второго рода.

Обе эти характеристики обычно вычисляются с помощью так  называемой функции мощности критерия. В частности, вероятность ошибки первого рода есть функция мощности, вычисленная при нулевой гипотезе. Для критериев, основанных на выборке фиксированного объема, вероятность ошибки второго рода есть единица минус функция мощности, вычисленная в предположении, что распределение наблюдений соответствует альтернативной гипотезе. Для последовательных критериев это также верно, если критерий останавливается с вероятностью единица (при данном распределении из альтернативы).

В статистических тестах обычно приходится идти на компромисс между  приемлемым уровнем ошибок первого и второго рода. Зачастую для принятия решения используется пороговое значение, которое может варьироваться с целью сделать тест более строгим или, наоборот, более мягким. Этим пороговым значением является уровень значимости, которым задаются при проверке статистических гипотез. Например, в случае металлодетектора повышение чувствительности прибора приведёт к увеличению риска ошибки первого рода (ложная тревога), а понижение чувствительности — к увеличению риска ошибки второго рода (пропуск запрещённого предмета).

Применение:

Биометрия

Ошибки первого и второго рода являются большой проблемой в системах биометрического сканирования, использующих распознавание радужной оболочки или сетчатки глаза, черт лица и т.д. Такие сканирующие системы могут ошибочно отождествить кого-то с другим, «известным» системе человеком, информация о котором хранится в базе данных (к примеру, это может быть лицо, имеющее право входа в систему, или подозреваемый преступник и т.п.). Противоположной ошибкой будет неспособность системы распознать легитимного зарегистрированного пользователя, или опознать подозреваемого в преступлении.

Массовая  медицинская диагностика (скрининг)

В медицинской практике есть существенное различие между скринингом и тестированием:

  • Скрининг включает в себя относительно дешёвые тесты, которые проводятся для большой группы людей при отсутствии каких-либо клинических признаков болезни (например, мазок Папаниколау).
  • Тестирование подразумевает гораздо более дорогие, зачастую инвазивные, процедуры, которые проводятся только для тех, у кого проявляются клинические признаки заболевания, и которые, в основном, применяются для подтверждения предполагаемого диагноза.

К примеру, в большинстве штатов в США обязательно прохождение  новорожденными процедуры скрининга наоксифенилкетонурию и гипотиреоз, помимо других врождённых аномалий. Несмотря на высокий уровень ошибок первого рода, эти процедуры скрининга считаются целесообразными, поскольку они существенно увеличивают вероятность обнаружения этих расстройств на самой ранней стадии.

Простые анализы крови, используемые для скрининга потенциальных доноров на ВИЧ и гепатит, имеют существенный уровень ошибок первого рода; однако в арсенале врачей есть гораздо более точные (и, соответственно, дорогие) тесты для проверки, действительно ли человек инфицирован каким-либо из этих вирусов.

Возможно, наиболее широкие дискуссии  вызывают ошибки первого рода в процедурах скрининга на рак груди (маммография). В США уровень ошибок первого рода в маммограммах достигает 15%, это самый высокий показатель в мире.Самый низкий уровень наблюдается в Нидерландах, 1%.

Медицинское тестирование

Ошибки второго рода являются существенной проблемой в медицинском тестировании. Они дают пациенту и врачу ложное убеждение, что заболевание отсутствует, в то время как в действительности оно есть. Это зачастую приводит к неуместному или неадекватному лечению. Типичным примером является доверие результатам кардиотестирования при выявлении коронарного атеросклероза, хотя известно, что кардиотестирование выявляет только те затруднения кровотока в коронарной артерии, которые вызваны стенозом.

Ошибки второго рода вызывают серьёзные и трудные для понимания проблемы, особенно когда искомое условие является широкораспространённым. Если тест с 10%-ным уровнем ошибок второго рода используется для обследования группы, где вероятность «истинно-положительных» случаев составляет 70%, то многие отрицательные результаты теста окажутся ложными.

Ошибки первого рода также могут вызывать серьёзные и трудные для понимания проблемы. Это происходит, когда искомое условие является редким. Если уровень ошибок первого рода у теста составляет один случай на десять тысяч, но в тестируемой группе образцов (или людей) вероятность «истинно-положительных» случаев составляет в среднем один случай на миллион, то большинство положительных результатов этого теста будут ложными.

Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.

Исследование лекарства  может привести к одному из возможных  способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).

Ошибки двух видов, связанные  с действиями аи асовершенно различны, различна и важность избежания их. Сначала рассмотрим случай, когда применяется действие а1, в то время когда предпочтительнее а2. Лекарство опасно для пациента, в то время как оно признано безопасным. Ошибка этого вида может вызвать смерть пациентов, употребляющих этот препарат. Это ошибка первого рода, так как нам важнее ее избежать.

Рассмотрим случай когда  предпринимается действие а2, в то время когда аявляется более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.

Допустимая вероятность  ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая  гипотеза. Это бывает в случаях, когда  различия, скажем, в средних арифметических экспериментальной и контрольной  групп настолько значимы (статистически  достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

первый уровень — 5% (р=5%); где допускается риск ошибки в  выводе в пяти случаях из ста теоретически возможных таких же экспериментов  при строго случайном отборе испытуемых для каждого эксперимента;

второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;

третий уровень — 0,1%, т. е. допускается риск ошибиться только в одном случае из тысячи.

Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности  результатов эксперимента и потому редко используется

Статистический критерий проверки нулевой гипотезы

Для проверки нулевой гипотезы используют специально подобранную  случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или v2 – по закону Фишера-Снедекора, T – по закону Стьюдента, c² – по закону «хи квадрат» и т. д. Все эти случайные величины обозначим через К.

Статистическим  критерием (или просто критерием) называют случайную величину К, которая служит для проверки нулевой гипотезы.

Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин, и таким  образом получают частное (наблюдаемое) значение критерия.

Наблюдаемым значением Кнабл назначают значение критерия, вычисленное по выборкам.

Критическая область

После выбора определенного  критерия множество всех его возможных  значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая  гипотеза отвергается, а другое – при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают.

Основной принцип  проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы – гипотезу принимают.

Поскольку критерий К – одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами и, следовательно, существуют точки, которые их разделяют.

Критическими  точками (границами) Ккр называют точки, отделяющие критическую область от области принятия гипотезы.

Различают одностороннюю (правостороннюю или левостороннюю) или двустороннюю критические области.

Правосторонней называют критическую область, определяемую неравенством К > Ккр, где Ккр – положительное число.

Левосторонней называют критическую область, определяемую неравенством К < Ккр, где Ккр – отрицательное число.

Односторонней называют правостороннюю или левостороннюю критическую область.

Двусторонней называют критическую область, определяемую неравенствами К< К1, К > К2, где К> К1.

В частности, если критические  точки симметричны относительно нуля, двусторонняя критическая область  определяется неравенствами (в предположении, что Ккр > 0): К < -Ккр, К > Ккр или равносильным неравенством   > Ккр.


 Общие принципы проверки  статистических гипотез

Процедура проверки нулевой  гипотезы в общем случае включает следующие этапы:

1.      задается допустимая вероятность ошибки первого рода (Ркр=0,05)

2.      выбирается статистика критерия (Т)

3.      ищется область допустимых значений

4.      по исходным данным вычисляется значение статистики Т

5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это основной принцип проверки всех статистических гипотез.

Обычно первые три этапа  выполняют профессиональные математики, а последние два – пользователи для своих частных данных.

В современных статистических пакетах на ЭВМ используются не стандартные  уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные буквой P, могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7 0,23 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне 12 тысячных. Это достоверный результат.

При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран  вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.

Если вычисленное значение Р превосходит выбранный уровень Ркр, 
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.

Число степеней свободы у какого-либо параметра определяют как число опытов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.

Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность  правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.

Вывод:

Таким образом знание и  применение альтернативной и нулевой  гипотезы в доказательной медицине врачом очень важно, в первую очередь для выявления заболевания у человека и населения в целом, то есть скрининг анализы и тесты абсолютно не могут применяться без знаний ошибок 1 и 2 рода.

Информация о работе Нулевая и альтернативная гипотеза. Ошибки 1 и 2 рода