Автор: Пользователь скрыл имя, 05 Апреля 2013 в 00:03, курсовая работа
Каждое такое правило определяет способ построения некоторой конструкции из элементов исходного множества, называемой комбинаторной конфигурацией. Поэтому можно сказать, что целью комбинаторного анализа является изучение комбинаторных конфигураций. Это изучение включает в себя вопросы существования комбинаторных конфигураций, алгоритмы их построения, оптимизацию таких алгоритмов, а также решение задач перечисления, в частности определение числа конфигураций данного класса.
Введение
1. Задача коммивояжера
1.1. Общее описание
1.2. Методы решения задачи коммивояжера
1.2.1. Жадный алгоритм.
1.2.2. Деревянный алгоритм
1.2.3. Метод ветвей и границ
1.2.4. Алгоритм Дейкстры
1.2.5. Мой метод решения задачи коммивояжера
1.2.6. Анализ методов решения задачи коммивояжера
1.3. Практическое применение задачи коммивояжера
Выводы
Литература
Приложения
*- ЗК с таким количеством
городов методом лексического
перебора современный
Как видим по результатам этой таблицы, алгоритм лексического перебора можно применять лишь в случае с количеством городов 5..12. Метод ветвей и границ, наряду с моим методом, можно применять всегда. Хотя мой метод я отнёс к приближённым алгоритмам, он фактически является точным, так как доказать обратное ещё не удалось.
1.3 Практическое применение задачи коммивояжера
Кроме очевидного применения ЗК на практике, существует ещё ряд задач, сводимых к решению ЗК.
Задача о производстве красок. Имеется производственная линия для производства n красок разного цвета; обозначим эти краски номерами 1,2… n. Всю производственную линию будем считать одним процессором.. Будем считать также, что единовременно процессор производит только одну краску, поэтому краски нужно производить в некотором порядке Поскольку производство циклическое, то краски надо производить в циклическом порядке p=(j1,j2,..,jn,j1). После окончания производства краски i и перед началом производства краски j надо отмыть оборудование от краски i. Для этого требуется время C[i,j]. Очевидно, что C[i,j] зависит как от i, так и от j, и что, вообще говоря,C[i,j]≠C[j,i]. При некотором выбранном порядке придется на цикл производства красок потратить время
Где tk - чистое время производства k-ой краски (не считая переналадок). Однако вторая сумма в правой части постоянна, поэтому полное время на цикл производства минимизируется вместе с общим временем на переналадку.
Таким образом, ЗК и задача
о минимизации времени
Задача о дыропробивном прессе. Дыропробивной пресс производит большое число одинаковых панелей – металлических листов, в которых последовательно по одному пробиваются отверстия разной формы и величины. Схематически пресс можно представить в виде стола, двигающегося независимо по координатам x, y, и вращающегося над столом диска, по периметру которого расположены дыропробивные инструменты разной формы и величины. Каждый инструмент присутствует в одном экземпляре. Диск может вращаться одинаково в двух направлениях (координата вращения z). Имеется собственно пресс, который надавливает на подвешенный под него инструмент тогда, когда под инструмент подведена нужная точка листа.
Операция пробивки j-того отверстия характеризуется четверкой чисел (xj,yj,zj,tj),, где xj,yj- координаты нужного положения стола, zj - координата нужного положения диска и tj - время пробивки j-того отверстия.
Производство панелей носит циклический характер: в начале и конце обработки каждого листа стол должен находиться в положениях (x0, y0) диск в положении z0 причем в этом положении отверстие не пробивается. Это начальное состояние системы можно считать пробивкой фиктивного нулевого отверстия. С параметрами (x0,y0,z0,0).
Чтобы пробить j-тое отверстие непосредственно после i-того необходимо произвести следующие действия:
1. Переместить стол по оси x из положения xi в положение xj, затрачивая при этом время t(x)(|xi-xj|)=ti,j(x)
Конкретный вид функций t(x), t(y), t(z) зависит от механических свойств пресса и достаточно громоздок. Явно выписывать эти функции нет необходимости
Действия 1-3 (переналадка с i-того отверстия j-тое) происходит одновременно, и пробивка происходит немедленно после завершения самого длительного из этих действий. Поэтому
С[i,j] = max(t(x), t(y), t(z))
Теперь, как и в предыдущем случае, задача составления оптимальной программы для дыропробивного пресса сводится к ЗК (здесь - симметричной).
Выводы
Литература