Задача коммивояжора

Автор: Пользователь скрыл имя, 05 Апреля 2013 в 00:03, курсовая работа

Краткое описание

Каждое такое правило определяет способ построения некоторой конструкции из элементов исходного множества, называемой комбинаторной конфигурацией. Поэтому можно сказать, что целью комбинаторного анализа является изучение комбинаторных конфигураций. Это изучение включает в себя вопросы существования комбинаторных конфигураций, алгоритмы их построения, оптимизацию таких алгоритмов, а также решение задач перечисления, в частности определение числа конфигураций данного класса.

Оглавление

Введение
1. Задача коммивояжера
1.1. Общее описание
1.2. Методы решения задачи коммивояжера
1.2.1. Жадный алгоритм.
1.2.2. Деревянный алгоритм
1.2.3. Метод ветвей и границ
1.2.4. Алгоритм Дейкстры
1.2.5. Мой метод решения задачи коммивояжера
1.2.6. Анализ методов решения задачи коммивояжера
1.3. Практическое применение задачи коммивояжера
Выводы
Литература
Приложения

Файлы: 1 файл

Zadacha commivoyazhera.doc

— 2.56 Мб (Скачать)

Пример 1. Дана полная сеть, показанная на рис.5. Найти тур жадным и деревянным алгоритмами.

-

1

2

3

4

5

6

1

-

6

4

8

7

14

2

6

-

7

11

7

10

3

4

7

-

4

3

10

4

8

11

4

-

5

11

5

7

7

3

5

-

7

6

14

10

10

11

7

-

табл. 1





 

 

 

 

 

 


Решение. Жадный алгоритм (иди в ближайший город из города 1) дает тур 1–(4)–3-(3)–5(5)–4–(11)–6–(10)–2–(6)–1, где без скобок показаны номера вершин, а в скобках – длины ребер. Длина тура равна 39, тур показана на рис. 5.

2. Деревянный алгоритм вначале строит остовное дерево, показанное на рис. 6 штриховой линией, затем эйлеров цикл 1-2-1-3-4-3-5-6-5-3-1, затем тур 1-2-3-4-5-6-1 длиной 43, который показан сплошной линией на рис. 6.

Теорема. Погрешность деревянного алгоритма равна 1.

Доказательство. Возьмем минимальный тур длины fB и удалим из него максимальное ребро. Длина получившейся гамильтоновой цепи LHC меньше fB. Но эту же цепь можно рассматривать как остовное дерево, т. к. эта цепь достигает все вершины и не имеет циклов. Длина кратчайшего остовного дерева  LMT меньше или равна LHC. Имеем цепочку неравенств

fB>LHC³LMT

(6)


Но удвоенное дерево – оно же эйлеров граф – мы свели к туру посредством спрямлений, следовательно, длина полученного  по алгоритму тура удовлетворяет неравенству

2LMT>fA

(7)


Умножая (6) на два и соединяя с (7), получаем цепочку неравенств

2fB>2LHC³2LMT³fA

(8)


Т.е. 2fB>fA, т.е. fA/fB>1+e; e=1.

Теорема доказана.

Таким образом, мы доказали, что деревянный алгоритм ошибается  менее, чем в два раза. Такие  алгоритмы уже называют приблизительными, а не просто эвристическими.

Известно еще несколько  простых алгоритмов, гарантирующих  в худшем случае e=1. Для того, чтобы найти среди них алгоритм поточнее, зайдем с другого конца и для начала опишем «brute-force enumeration» - «перебор животной силой»,  как его называют в англоязычной литературе. Понятно, что полный перебор практически применим только в задачах малого размера. Напомним, что ЗК с n городами требует при полном переборе рассмотрения (n-1)!/2 туров в симметричной задаче и (n-1)! Туров в несимметричной, а факториал, как показано в следующей таблице, растет удручающе быстро:

5!

10!

15!

20!

25!

30!

35!

40!

45!

50!

~102

~106

~1012

~1018

~10125

~1032

~1040

~1047

~1056

~1064


Чтобы проводить полный перебор  в ЗК, нужно научиться (разумеется, без повторений) генерировать все перестановки заданного числа m элементов. Это можно сделать несколькими способами, но самый распространенный (т.е. приложимый для переборных алгоритмов решения других задач) – это перебор в лексикографическом порядке.

Пусть имеется некоторый  алфавит и наборы символов алфавита (букв), называемые словами. Буквы в  алфавите упорядочены: например, в русском алфавите порядок букв аµбµя (символ µ читается «предшествует)». Если задан порядок букв, можно упорядочить и слова. Скажем, дано слово u=(u1,u2,..,um) – состоящее из букв u1,u2,..,um - и слово v =(v1,v2,..,vb). Тогда если u1µv1, то и uµv, если же u1=v1, то сравнивают вторые буквы и т.д. Этот порядок слов и называется лексикографическим. Поэтому в русских словарях (лексиконах) слово «абажур» стоит раньше слова «абака». Слово «бур» стоит раньше слова «бура», потому что пробел считается предшествующим любой букве алфавита.

Рассмотрим, скажем, перестановки из пяти элементов, обозначенных цифрами 1..5. Лексикографически первой перестановкой является 1-2-3-4-5, второй – 1-2-3-5-4, …, последней – 5-4-3-2-1. Нужно осознать общий алгоритм преобразования любой перестановки в непосредственно следующую.

Правило такое: скажем, дана перестановка 1-3-5-4-2. Нужно двигаться  по перестановке справа налево, пока впервые не увидим число, меньшее, чем предыдущее (в примере это 3 после 5). Это число, Pi-1 надо увеличить, поставив вместо него какое-то число из расположенных правее, от Pi до Pn. Число большее, чем Pi-1, несомненно, найдется, так как                 Pi-1< Pi . Если есть несколько больших чисел, то, очевидно, надо ставить меньшее из них. Пусть это будет Pj,j>i-1. Затем число Pi-1 и все числа от Pi до Pn, не считая Pj нужно упорядочить по возрастанию. В результате получится непосредственно следующая перестановка, в примере –   1-4-2-3-5. Потом получится 1-4-2-5-3 (тот же алгоритм, но упрощенный случай) и т.д.

Нужно понимать, что в  ЗК с n городами не нужны все перестановки из n элементов. Потому что перестановки, скажем, 1-3-5-4-2 и 3-5-4-2-1 (последний элемент соединен с первым) задают один и тот же тур, считанный сперва с города 1, а потом с города 3. Поэтому нужно зафиксировать начальный город 1 и присоединять к нему все перестановки из остальных элементов. Этот перебор даст (n-1)! разных туров, т.е. полный перебор в несимметричной ЗК (мы по-прежнему будем различать туры 1-3-5-4-2 и 1-2-4-5-3).

Данный алгоритм описан на языке Паскаль (см. Приложения).

Пример 2. Решим ЗК, поставленную в Примере 1 лексикографическим перебором. Приведенная выше программа напечатает города, составляющие лучший тур: 1-2-6-5-4-3 и его длину 36.

Желательно усовершенствовать  перебор, применив разум. В следующем пункте описан алгоритм, который реализует простую, но широко применимую и очень полезную идею.

 

1.2.3. Метод  ветвей и границ

 

К идее метода ветвей и  границ приходили многие исследователи, но Литтл с соавторами на основе указанного метода разработали удачный алгоритм решения ЗК и тем самым способствовали популяризации подхода. С тех пор метод ветвей и границ был успешно применен ко многим задачам, для решения ЗК было придумано несколько других модификаций метода, но в большинстве учебников излагается пионерская работа Литтла.

Общая идея тривиальна: нужно разделить  огромное число перебираемых вариантов  на классы и получить оценки (снизу  – в задаче минимизации, сверху –  в задаче максимизации) для этих классов, чтобы иметь возможность отбрасывать варианты не по одному, а целыми классами. Трудность состоит в том, чтобы найти такое разделение на классы (ветви) и такие оценки (границы), чтобы процедура была эффективной.

-

1

2

3

4

5

6

1

-

0

0

3

3

6

2

0

-

1

4

1

0

3

1

2

-

0

0

3

4

4

5

0

-

1

3

5

4

2

0

1

-

0

6

7

1

3

3

0

-

   

2

 

1

 

4

табл. 4




Изложим алгоритм Литтла на примере 1 предыдущего раздела.. Повторно запишем матрицу:

-

1

2

3

4

5

6

1

-

6

4

8

7

14

2

6

-

7

11

7

10

3

4

7

-

4

3

10

4

8

11

4

-

5

11

5

7

7

3

5

-

7

6

14

10

10

11

7

-

табл. 2




-

1

2

3

4

5

6

 

1

-

2

0

4

3

10

4

2

0

-

1

5

1

4

6

3

1

4

-

1

0

7

3

4

4

7

0

-

1

7

4

5

4

4

0

2

-

4

3

6

7

3

3

4

0

-

7

табл. 3




 

Нам будет удобнее  трактовать Сij как стоимость проезда из города i в город j. Допустим, что добрый мэр города j издал указ выплачивать каждому въехавшему в город коммивояжеру 5 долларов. Это означает, что любой тур подешевеет на 5 долларов, поскольку в любом туре нужно въехать в город j. Но поскольку все туры равномерно подешевели, то прежний минимальный тур будет и теперь стоить меньше всех. Добрый же поступок мэра можно представить как уменьшение всех чисел j-го столбца матрицы С на 5. Если бы мэр хотел спровадить коммивояжеров из  j-го города и установил награду за выезд в размере 10 долларов, это можно было бы выразить вычитанием 10 из всех элементов j-й той строки. Это снова бы изменило стоимость каждого тура, но минимальный тур остался бы минимальным. Итак, доказана следующая лемма.

Вычитая любую константу  из всех элементов любой строки или  столбца матрицы С, мы оставляем  минимальный тур минимальным.

Для алгоритма нам будет удобно получить побольше нулей в матрице  С, не получая там, однако, отрицательных чисел. Для этого мы вычтем из каждой строки ее минимальный элемент (это называется приведением по строкам, см. табл. 3), а затем вычтем из каждого столбца матрицы, приведенной по строкам, его минимальный элемент, получив матрицу, приведенную по столбцам, см. табл. 4).

Информация о работе Задача коммивояжора