Применения второй производной

Автор: Пользователь скрыл имя, 03 Ноября 2012 в 12:26, контрольная работа

Краткое описание

Дифференциальное исчисление широко используется при исследовании функций. С помощью производной можно найти промежутки монотонности функции, ее экстремальные точки, наибольшие и наименьшие значения.
Если функция f имеет положительную (отрицательную) производную в каждой точке некоторого промежутка, то она возрастает (убывает) на этом промежутке. При нахождении промежутков монотонности нужно иметь в виду, что если функция возрастает (убывает) на интервале (a,b) и непрерывна в точках a и b, то она возрастает (убывает) на отрезке [a,b].

Файлы: 1 файл

второй применения производной.docx

— 35.43 Кб (Скачать)

Применения второй производной

1.1. Применение  производной при решении неравенств

Дифференциальное  исчисление широко используется при  исследовании функций. С помощью  производной можно найти промежутки монотонности функции, ее экстремальные  точки, наибольшие и наименьшие значения.

Если функция f имеет положительную (отрицательную) производную в каждой точке некоторого промежутка, то она возрастает (убывает) на этом промежутке. При нахождении промежутков монотонности нужно  иметь в виду, что если функция  возрастает (убывает) на интервале (a,b) и непрерывна в точках a и b, то она возрастает (убывает) на отрезке [a,b].

Если точка x0 является точкой экстремума для функции f и в этой точке существует производная, то f/(x0)=0. В точке экстремума функция  может не иметь производную. Внутренние точки области определения, в  которых производная равна нулю или не существует, называются критическими. Чтобы установить, имеет ли функция  в данной критической точке экстремум, пользуются следующими достаточными признаками существования экстремума.

Если функция f непрерывна в точке x0 и существуют такие точки a, b, что f/(x0)>0 (f/(x0)<0 ) на интервале (a,x0) и f/(x0)<0 (f/(x0)>0 ) на интервале (x0,b), то точка x0 является точкой максимума (минимума) функции f.

Для отыскания  наибольших и наименьших значений f на отрезке [a,b] достаточно сравнить между собой значения f в точках a, b и в критических точках из отрезка [a,b].

Эти результаты применимы при решении многих элементарных задач, связанных с  неравенствами.

Пусть, например, требуется доказать, что на некотором  промежутке имеет место неравенство f(x)³g(x). Обозначим f(x)-g(x) через F(x). С помощью  производной F/(x) находим наименьшее значение F на данном промежутке. Если оно неотрицательно, то во всех точках рассматриваемого промежутка F(x)³0, т.е.

f(x)³g(x).

Задача 1.1. Доказать что (e+x)e-x>(e-x)e+x для 0<x<e.

Решение.

Данное неравенство  равносильно следующему: (e-x)ln(e+x)>(e+x)ln(e-x).

Пусть f(x)=(e-x)ln(e+x)-(e+x)ln(e-x),

тогда  f/(x)=-ln(e+x)+(e-x)/(e+x)-ln(e-x)+(e+x)/(e-x).

Так как (e-x)/(e+x)+(e+x)/(e-x)=2(e2+x2)/(e2-x2)>2,

ln(e+x)+ln(e-x)=ln(e2-x2)<lne2=2,

то f/(x)>0 при 0<x<e. Следовательно, функция f возрастает на интервале (0,e). Функция f(0) – непрерывна. Поэтому эту точку можно включить в промежуток возрастания. Поскольку f(0)=0, а f возрастает при 0£x<e, то f(x)>0 при 0<x<e. Отсюда получаем решение задачи 1.

Задача 1.2. Доказать неравенство tgka+ctgka³2+k2cos22a, 0<a<p/2, k–натуральные.

Решение.

Неравенство можно записать в виде: (ctgk/2a–tgk/2a)2³k2cos22a.

Пусть сначала 0<a<p/4. На этом интервале ctg a> tg a, cos 2a>0, поэтому последнее неравенство эквивалентно неравенству ctgk/2a–tgk/2a ³ k*cos 2a.

Положим f(a)=ctgna–tgna–2n*cos 2a, где n=k/2.

Далее, f/(a) = –(n/sin2a)ctgn-1a – (n/cos2a)tgn-1a + 4n*sin 2a = – n((ctgn-1a + tgn-1a) + (ctgn+1a + tgn+1a) – 4sin 2a) £ – n(2-2sin 2a)<0 при 0<a<p/4.

Здесь, как  и в предыдущей задаче, использован  тот факт, что сумма взаимно  обратных положительных чисел больше или равна 2. Таким образом, на интервале 0<a<p/4 функция f убывает. В точке a=p/4 она непрерывна, поэтому (0; p/4] является промежутком убывания f. Наименьшим значением функции на этом промежутке является f(p/4)=0. Следовательно, f(a)³0 при 0<a<p/4. Для указанного промежутка неравенство доказано. Если p/4<a<p/2, то 0<p/2–a<p/4. Однако неравенство не меняется при заменен a на p/2–a. Задача 2 решена.

 

Задача 1.3. Что  больше ep или pe ?

Решение.

Для решения  задачи исследуем вопрос о существовании  решений уравнения с двумя  неизвестными: ab=ba, a>0, b>0. Исключим тривиальный случай a=b и для определенности будем предполагать, что a<b. Ввиду симметричности вхождения a и b в уравнение, последнее замечание не ограничивает общности рассуждений. Ясно, что уравнение ab=ba равносильно уравнению b*(ln a)=a*(ln b), или

(ln a)/a = (ln b)/b.

Пусть f(x)=(ln x)/x  (1). Существование решений уравнения (1) эквивален-тно наличию значений x1 и x2 (x1<x2) таких, что f(x1)=f(x2). В этом случае пара (x1,x2) является решением уравнения (1). Иными словами, требуется выяснить, найдется ли прямая y=c, пересекающая график функции f по крайней мере в двух различных точках. Для этого исследуем функцию f. Ее производная f/(x)=(1–ln x)/x2 в области определения f имеет единственную критическую точку x=e. При 0<x<e f/(x)>0 функция f возрастает, а при x>e f/(x)<0 функция f убывает. Поэтому в точке x=e f принимает свое наибольшее значение (1/e). Так как функция (ln x)/x непрерывна и возрастает на промежутке (0,e], то она на этом промежутке принимает все значения от –¥ до 1/е. Аналогично, на промежутке [e,¥) функция f принимает все значения из (0,1/e]. Из результатов исследования функции f вытекают следующие утверждения:

1. Если 0<a<b и a£1, то (ln a)/a<(ln b)/b. Поэтому ab<ba . Следовательно, уравнение (1) и равносильное ему уравнение ab=ba не имеют решений.

2. Если 1<a<b£e, то ab<ba и уравнение ab=ba также не имеют решений.

3. Если b>a>e, то ab>ba.

Таким образом, если (a,b) является решением уравнения ab=ba , то 1<a<e, b>e. Более того, при каждом фиксированном значении 1<a<e найдется единственное значение b>e такое, что ab=ba

Для ответа на вопрос задачи 3 достаточно положить a=e, b=p и воспользоваться утверждением (1). Итак, ep > pe . Задача 3 решена.

Задача 1.4. Два  туриста отправились по одному маршруту. В первый день они прошли одно и  то же расстояние. В каждый из следующих  дней первый турист увеличивал пройденный путь, по сравнению предыдущим, на одно и то же расстояние, а второй –  в одно и то же число раз. Выяснилось, что в n-тый день (n>2) путешествия туристы снова прошли одно и то же расстояние. Доказать, что за n дней первый турист прошел путь больший, чем второй.

Решение.

Расстояние, пройденное первым туристом за n дней, представляет собой сумму n первых членов арифметической прогрессии, а вторым – сумму n первых членов геометрической прогрессии. Обозначим эти расстояния соответственно Sn и Sn/. Если a – первый член прогрессии, d – разность арифметической прогрессии, q – знаменатель геометрической прогрессии, то

  

Приравнивая n-е члены прогрессий, находим

 

Тогда  , где q>1 (по условию задачи). Задача 4 будет решена, если мы покажем, что , где n>2, q>1  (2)

При n=3 имеем , что равносильно очевидному неравенству . Предполагая, что неравенство (2) справедливо при n=k, докажем его для n=k+1. Имеем

 

Для завершения доказательства достаточно убедиться, то выражение  при k>2. Здесь целесообразно  обратиться к производной.

Пусть  Производная  положительная при x>1. Поэтому f при x>1 возрастает. Так как f(1)=0 и функция f непрерывна в точке x=1, то f(x)>0 при x>1, т.е. f(q)>0. Итак, Sn>Sn/. Задача 4 решена.

1.2. Использование  основных теорем дифференциального  исчисления при доказательстве  неравенств

ТЕОРЕМА 1 (Ролля).Пусть функция f:[a,b]®R удовлетворяет условиям:

1) fÎC[a,b];  2) "xÎ(a,b) существует f/(x);  3) f(a)=f(b). Тогда $CÎ(a,b): f/(C)=0.

Геометрический  смысл теоремы Ролля: при выполнении условий 1)-3) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции параллельна оси абсцисс. На практике чаще используется следующее утверждение теоремы Ролля: между любыми двумя нулями дифференцируемой функции существует хотя бы один нуль у производной.

ТЕОРЕМА 2 (Лагранжа про среднее значение, или про  конечное приращение). Допустим что функция f:[a,b]®R удовлетворяет условиям:

1) fÎC[a,b];  2) "xÎ(a,b) существует f/(x). Тогда $CÎ(a,b): f(b)-f(a)=f/(C)(b-a).

Отношение (f(b)-f(a))/(b-a) есть тангенс угла наклона к оси  абсцисс секущей, которая проходит через точки (a, f(a)), (b, f(b)). Геометрический смысл теоремы Лагранжа: при выполнении условий 1)-2) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции в точке (C, f(C)) параллельна секущей.

Следствие 1. Пусть функція f:[a,b]®R имеет производную f/ на (a,b) і "xÎ(a,b) f/(x)=0. Тогда для некоторого LÌ R "xÎ(a,b) f(x)=L.

Следствие 2. Функции f:[a,b]®R, g:[a,b]®R имеют произодныеі f/ и g/ на (a,b) и "xÎ(a,b) f/(x)=g/(x). Тогда для некоторого числа LÌ R "xÎ(a,b): f(x)=g(x)+L.

Следствие 3. Пусть функция f:[a,b]®R имеем производную f/ на (a,b) и для некоторого LÌ R "xÎ(a,b) f/(x)=L. Тогда для некоторого MÌ R "xÎ(a,b): f(x)=Lx+M.

ТЕОРЕМА 3 (Коши). Пусть функции f:[a,b]®R, g:[a,b]®R удовлетворяют  условиям: 1) f, gÎC[a,b]; 2) "xÎ(a,b) существуют производныеі f/ и g/ ; 3) "xÎ(a,b) g/(x)¹0.

Тогдаі $CÎ(a,b): (f(b)-f(a))/(g(b)-g(a))=f/(C)/g/(C).

Теорема Лагранжа – это частный случай теоремы  Коши при g(x)=x, xÎ[a,b].

Задача 1.5. Доказать, что для любых x, y Ì R: ½sin x – sin y½£½x–y½;   x, y Ì R: ½cos x – cos y½£½x–y½;  x, y Ì R: ½arctg x – arctg y½£½x–y½;

x, y Ì [1; +¥): ½Öx – Öy½£ 0.5½x–y½.

Доказательство  этих неравенств аналогичное. Поэтому  рассмотрим доказательство первого  неравенства. Пусть, например x<y. К  фунции sin применим на отрезке [x,y] теорему Лагранжа:

$CÎ(x,y): ½sin x – sin y½=½cos C½(x–y). Учитывая неравенство ½cos u½£1, uÎR, получим требуемое неравенство.

Задача 1.6. Доказать, что для любого x Ì R: ex ³ 1+x, причем равенство может быть тогда и только тогда, когда x=0.

Пусть сначала x>0. По теореме Лагранжа для функции f(u)=eu, uÎ[0,x],

$CÎ(0,x): ex – e0 = eC(x-0)>x, так как eC>1 для C>0. Если x<0, то теорему Лагранжа используем для функции f(u)=eu, uÎ[x,0]. Имеем $CÎ(x,0): e0 – ex = eC(0-x)<–x, так как –x>0, а eC<1 для C<0. Таким образом, при x¹0 имеем ex > 1+x.

Задача 1.7. Доказать, что для любого x >0: ex>1+x+(x2/2).

Для доказательства неравенства применим теорему Коши к функциям

f(u)=eu,  g(u)=1+u+(u2/2),  uÎ[0,x]. Получим $CÎ(0,x): (ex – e0)/(1+x+(x2/2)–1) = eC/(1+c). Учитывая доказанное неравенство, найдем (ex-1)/(x+(x2/2))>1, откуда ex>1+x+(x2/2).

Задача 1.8. Доказать, что для 0<x<p/2 выполняется sin x > (2/p)x.

Пусть f(x)=(sin x)/x (0<x£p/2). Производная f/(x)=cos x (x–tg x)/x2 (0<x<p/2) будет отрицательной, так как x<tg x. Таким образом, функция f(x) убывает и f(x)>f(p/2)=2/p, если 0<x<p/2.

Задача 1.9. Доказать, что при x>0 выполняется cos x >1–(1/2)x2.

Функция f(x)=cos x –1+(1/2)x2 равна 0 при x=0. Ее производная, при x>0,

f/(x) = –sin x+x>0 (или sin x< x). Т.е., функция f(x) для x³0 возрастающая, а при x<0 будет f(x)>f(0)=0, т.е. cos x>1–(1/2)x2.

Отсюда, аналогично при x>0 получим sin x>x–(1/6)x3.

Задача 1.10. Доказать, что при 0<x<p/2 выполняется tg x > x+(1/3)x3.

Для этого  достаточно установить, что для указанных x производная функции tg x–x–(1/3)x3, равна sec2x–1–x2, положительна, т.е. что tg2x – x2>0, а это приводит к известному неравенству tg x>x.

Задача 1.11. Доказать, что при x>0 выполняется ln x £ x-1.

Так как функция f(x)=ln x–x (x>0) имеет производную f/(x)=(1/x)–1 > 0 (при 0<x<1) и f/(x)=(1/x)–1 < 0 (при x>1), то функция возрастает пока x изменяется на промежутке (0,1], и убывает на промежутке [1;+¥). Отсюда получаем, что f(1)=–1 будет наибольшим значением функции, так что для x>0 выполняется ln x £ x-1.

1.3. Применение  производной при решении уравнений

Покажем, как  с помощью производной можно  решать вопросы существова-ния корней уравнения, а в некоторых случаях и их отыскания. По-прежнему основную роль здесь будут играть исследования функции на монотонность, нахождение ее экстремальных значений. Кроме того, будет использован ряд свойств монотонных и непрерывных функций.

Свойство 1. Если функция f возрастает или убывает  на некотором промежутке, то на этом промежутке равнение f(x)=0 имеет не более  одного корня.

Это утверждение  вытекает непосредственно из определения  возрастающей и убывающей функций. Корень уравнения f(x)=0 равен абсциссе точки пересечения графика функции y=f(x) с осью x.

Свойство 2. Если функция f определена и непрерывна на промежутке [a,b] и на его концах принимает значения разных знаков, то между a и b найдется точка c, в которой f(c )=0.

Задача 1.12. Решить уравнение 

Решение.

Заметим, что  является корнем уравнения. Докажем, что  других корней это уравнение не имеет. Исследуем функцию f, где , на монотонность. Производная . Установим промежутки, на которых функция сохраняет знак. Для этого исследуем ее на монотонность. Производная . Так как при , то  при . Следовательно, функция возрастает при положительных значениях x; . Поэтому при . В силу четности функции она принимает положительные значения при всех . Следовательно, f возрастает на всей числовой оси. Согласно свойству 1, уравнение  имеет не более одного корня. Итак,  – единственный корень уравнения.

Задача 1.13. Решить систему уравнений 

Решение.

Система эквивалентна следующей:

Из первого  уравнения следует, что , из второго – . Выразим з первого уравнения x через y: , . Тогда . положив , получим или . Производная функции f, где , равна . она отрицательна при всех значениях t. Таким образом, функция f убывает. Поэтому уравнение имеет не более одного корня. Заметим, что является его корнем. Итак,  единственное решение системы.

Задача 1.14. Доказать, что уравнение  имеет единственный корень, лежащий в интервале .

Решение.

Уравнение равносильными  преобразованиями приводится к виду , где . Функция f возрастающая, так как при всех . Согласно свойству 1, уравнение имеет не более одного решения. Функция f непрерывна, кроме того, , . В силу свойства 2 уравнение на интервале имеет корень.

В задаче 3 требовалось  доказать, что корень уравнения принадлежит  некоторому промежутку. Мы пользовались свойством 2 непрерывной на отрезке  функции, принимающей на концах этого  отрезка значения разных знаков. Этот путь не всегда приводит к цели при  решении подобных задач. Иногда целесооб-разно воспользоваться следующим свойством дифференцируемых функций.

Свойство 3 (Теорема  Ролля). Если функция f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и f(a)=f(b), то существует точка такая, что .

 На геометрическом  языке свойство 3 означает следующее:  если , то на графике кривой  найдется точка С с координатами , где касательная к графику параллельна оси x.

Задача 1.15. Доказать, что уравнение  при ,  имеет не более одного действительного корня.

Решение.

Предположим, что уравнение имеет, по крайней  мере, два корня  и . Функция f, где дифференцируема на всей числовой прямой. Так как , то согласно свойству 3, ее производная на интервале имеет корень. Однако при  уравнение решений не имеет. Полученное противоречие показывает, что уравнение не может иметь более одного корня.

Информация о работе Применения второй производной