Некоторые специальные виды линейных операторов

Автор: Пользователь скрыл имя, 23 Декабря 2011 в 16:45, курсовая работа

Краткое описание

Немаловажную роль в математике играют такие понятия, как линейная алгебра, группы, подгруппы, кольца и поля. Большое значение имеют различные алгебры и группы матриц, которые находят свое применение во многих математических дисциплинах, таких как алгебра, теория чисел, геометрия и т.д.
В данной работе рассмотрены различные виды линейных операторов, такие как, обратимые, симметрические, кососимметрические, нормальные, унитарные и ортогональные.

Оглавление

Введение…………………………………………………………………………...3
Глава 1. Алгебра и группы………………………………………………………..4
§1. Определение группы………………………………………………………….4
§2. Полукольца, кольца…………………………………………………………...5
§3. Понятие векторного пространства…………………………………………...6
§4. Понятие евклидового и унитарного пространства……………………….....7
§5. Понятие алгебры………………………………………………………………8
Глава 2. Общая теория линейных операторов…………………………………10
§1. Определение линейного оператора…………………………………………10
§2. Действия с линейными операторами……………………………………….12
§3. Матрица линейного оператора……………………………………………...15
§4. Обратный оператор………………………………………………………….18
§5. Сопряженный линейный оператор………………………………………....19
§6 Собственный вектор и собственное значение линейного оператора……..21
Глава 3. Некоторые специальные виды линейных операторов………………22
§1. Нормальные операторы……………………………………………………..22
§2. Унитарные и ортогональные операторы…………………………………...23
§3. Симметрические операторы………………………………………………...25
Приложение (задачи)…………………………………………………………….27
Заключение……………………………………………………………………….33
Список литературы……………………