Автор: Пользователь скрыл имя, 13 Декабря 2010 в 21:01, курсовая работа
Методы сетевого моделирования относятся к методам принятия оптимальных решений, что оправдывает рассмотрение этого типа моделей в данной курсовой работе.
ВВЕДЕНИЕ
Выполнение
комплексных научных
во-первых, какие работы или операции из числа многих, составляющих проект, являются «критическими» по своему влиянию на общую календарную продолжительность проекта и,
во-вторых,
каким образом построить
Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений, что оправдывает рассмотрение этого типа моделей в данной курсовой работе.
ОСНОВНАЯ ЧАСТЬ
1.1 Сетевые модели планирования и управления.
Сетевой моделью (СМ) называется экономико-математическая модель, отражающая весь комплекс работ и событий, связанных с реализацией проекта в их логической и технологической последовательности и связи.
Математический аппарат сетевых моделей базируется на теории графов.
Графом называется совокупность двух конечных множеств:
множества точек, которые называются вершинами, и множества пар вершин,
которые называются ребрами. Если рассматриваемые пары вершин являются
упорядоченными, т. е. на каждом ребре задается направление, то граф называется
ориентированным; в противном случае — неориентированным.
Последовательность неповторяющихся ребер, ведущая от некоторой вершины к
другой, образует путь.
Граф называется связным, если для любых двух его вершин существует путь, их
соединяющий; в противном случае граф называется несвязным.
В экономике чаще всего используются два вида графов: дерево и сеть.
Дерево представляет собой связный граф без циклов, имеющий
исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.
Сеть — это ориентированный конечный связный граф, имеющий
начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».
В экономических исследованиях сетевые модели возникают при моделировании
экономических процессов методами сетевого планирования и управления (СПУ).
Объектом управления в системах сетевого планирования и управления являются
коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.
Основой сетевого планирования и управления является сетевая модель (СМ), в
которой моделируется совокупность взаимосвязанных работ и событий,
отображающих процесс достижения определенной цели. Она может быть
представлена в виде графика или таблицы.
Рисунок 1 – Сетевая модель
Основные понятия сетевой модели:
событие,
работа
путь.
На рис. 1 графически представлена сетевая модель, состоящая из 11 событий и
16 работ,
продолжительность выполнения
Работа
характеризует материальное действие,
требующее использования
номер события, из которого работа выходит, а j — номер события, в которое она
входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i,j)
-Например, запись t (2,5) = 4 означает, что работа (2,5) имеет
продолжительность 5 единиц. К работам относятся также такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками (см. работу (6,9)).
Событиями называются результаты выполнения одной или нескольких
работ. Они не имеют протяженности во времени. Событие свершается в тот
момент, когда оканчивается последняя из работ, входящая в него. События
обозначаются одним числом и при графическом представлении сетевая модель
изображаются кружком (или иной геометрической фигурой), внутри которого
проставляется его порядковый номер (i = 1, 2, ..., n).
В сетевой модели имеется начальное событие (с номером 1), из которого работы
только выходят, и конечное событие (с номером N), в которое работы только
входят.
Путь — это цепочка следующих друг за другом работ, соединяющих
начальную и конечную вершины, например, в приведенной выше модели путями
являются L1 = (1, 2, 3, 7, 10, 11), L2 = (1, 2, 4, 6, 11)
и др.
Продолжительность пути определяется суммой продолжительностей
составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают LKp, а его продолжительность — tкр. Работы,
принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.
Cетевая модель имеют ряд характеристик, которые позволяют определить степень
напряженности выполнения отдельных работ, а также всего их комплекса и
принять решение о перераспределении ресурсов.
Перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям:
1. События
правильно пронумерованы, т. е.
рис. 2 работы (4,3) и (3,2)). При невыполнении этого требования необходимо
использовать алгоритм пере нумерации событий, который заключается в следующем: нумерация событий начинается с исходного события, которому присваивается № 1;
из исходного события вычеркивают все исходящие из него работы (стрелки), и на
оставшейся сети находят событие, в которое не входит ни одна работа, ему и
присваивают № 2;
затем вычеркивают работы, выходящие из события № 2, и вновь находят событие,
в которое не входит ни одна работа, и ему присваивают № 3, и так продолжается
до завершающего события, номер которого должен быть равен количеству событий
в сетевом графике;
если при очередном вычеркивании работ одновременно несколько событий не имеют
входящих в них работ, то их нумеруют очередными номерами в произвольном
порядке.
2. Отсутствуют
тупиковые события (кроме
которыми не следует хотя бы одна работа (событие 5);
3. Отсутствуют
события (за исключением
хотя бы одна работа (событие 7);
4. Отсутствуют циклы, т. е. замкнутые пути, соединяющие событие с ним же
самим (см. путь (2,4,3)).
При невыполнении указанных требований бессмысленно приступать к вычислениям характеристик событий, работ и критического пути. Для событий рассчитывают три характеристики: ранний и поздний срок совершения события, а также его резерв.
Ранний срок свершения события определяется величиной наиболее
длительного отрезка пути от исходного до рассматриваемого события, причем t
р(1) = 0, a tр (N) = tKp(L):
tр(j)=max { tр(j) +(i,j)}; j=2,N
Поздний срок свершения события характеризует самый поздний
допустимый срок, к которому должно совершиться событие, не вызывая при этом
срыва срока свершения конечного события:
tn (i) = min { tn (i) - t(i,j)}; j=2,N-1
Этот показатель определяется «обратным ходом», начиная с завершающего события, с учетом соотношения tn (N) = tp (N).
Все события, за исключением событий, принадлежащих критическому пути, имеют резерв R(i):
R(i)= tn (i) - tp (i)
Резерв показывает, на какой предельно допустимый срок можно задержать
наступление этого события, не вызывая при этом увеличения срока выполнения
всего комплекса работ. Для всех работ (i,j) на основе ранних и
поздних сроков свершения всех событий можно определить показатели:
Ранний срок начала — tpn(i,j) = p(i),
Ранний срок окончания — tpo(i,j) = tp(i) +t(i,j)
Поздний срок окончания — tno(U)=tn(j)
Поздний срок начала — tпн(i,j) = tn(j) - t(i,j)
Полный резерв времени — Rn(i,j) = tn(j) - tp(i) - t(i,j),
Независимый резерв — Rн(i,j)=max{0;tp(j)–tn(i) - t(i,j)} = max {0; Rn(i,j)-R(i)-R(j)}.
Полный резерв времени показывает, на сколько можно увеличить время
выполнения конкретной работы при условии, что срок выполнения всего комплекса
работ не изменится.
Независимый резерв времени соответствует случаю, когда все
предшествующие работы заканчиваются в поздние сроки, а все последующие —
начинаются в ранние сроки. Использование этого резерва не влияет на величину
резервов времени других работ.