Дифференциальные уравнения 2-го порядка

Автор: Пользователь скрыл имя, 30 Января 2013 в 16:01, курсовая работа

Краткое описание

Получить общее решение или решить задачу Коши для дифференциального уравнения 2-го порядка аналитически удается далеко не всегда. Однако в некоторых случаях удается понизить порядок уравнения с помощью введения различных подстановок. Разберем эти случаи.

Файлы: 1 файл

Дифференциальные уравнения 2-го порядка.doc

— 9.28 Мб (Скачать)

Докажем еще  одну простую теорему, которая часто  используется при решении лнду.

Теорема 2. Если - решение дифференциального уравнения f1(x), а - решение уравнения f2(x), то функция будет решением уравнения

 f1(x) + f2(x). (6.5)

Доказательство.

Подставив функцию  в уравнение (6.5), получим

 f1 + f2. Это равенство является тождеством, т.к. f1 и f2. Теорема доказана.

 

 

 

§7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью.

Пусть в уравнении (6.1) коэффициенты постоянны, т.е. уравнение  имеет вид:

 f(x) (7.1)

где .

Рассмотрим  метод отыскания частного решения уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

  1. f(x) , где – многочлен степени , причем некоторые коэффициенты, кроме , могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.
  2. Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение записываем в виде: , где – неопределенные коэффициенты, которые подлежат определению методом неопределенных коэффициентов.

Пример 1. Найти общее решение уравнения .

Решение.

Для уравнения составляем характеристическое уравнение: . Откуда получаем , . Следовательно, общее решение однородного уравнения есть . Правая часть заданного уравнения f(x) имеет специальный вид (случай 1), причем не является корнем характеристического уравнения, поэтому частное решение ищем в виде: , где – неопределенные коэффициенты. Найдем производные первого и второго порядков и подставим их в заданное уравнение:

.

Обе части сокращаем  на и приравниваем коэффициенты при одинаковых степенях в левой и правой частях равенства

 

Из полученной системы уравнений находим: . Тогда , а общее решение заданного уравнения есть:

.

  1. Если является корнем кратности соответствующего характеристического уравнения, то частное решение ищем в виде:

,

где – неопределенные коэффициенты.

Пример 2. Решить уравнение .

Решение.

Соответствующее характеристическое уравнение имеет  вид:

, откуда  , . Тогда общее решение однородного уравнения есть: .

Правая часть  заданного уравнения имеет специальный  вид (случай 1). Так как  является корнем характеристического уравнения кратности , то частное решение ищется в виде:

. Находим неопределенные  коэффициенты  методом, изложенным в примере 1. В результате получаем . Окончательно имеем следующее выражение для общего решения:

.

  1. Правая часть f(x) , где хотя бы одно из чисел и отлично от нуля. Укажем вид частного решения в этом случае.
  2. Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение ищем в виде:

,

где – неопределенные коэффициенты.

  1. Если число является корнем характеристического уравнения для уравнения (5.1), причем его кратность , то записываем частное решение в виде:

,

где – неопределенные коэффициенты.

Пример 3. Решить уравнение .

Решение.

Корни характеристического  уравнения для уравнения  будут , . Тогда общее решение этого лоду: .

Правая часть  заданного в примере 3 уравнения имеет специальный вид: f(x) , где , а . Число является корнем характеристического уравнения кратности , поэтому частное решение лнду имеет вид: .

Для определения  и находим , и подставляем в заданное уравнение:

.

Приводя подобные члены, приравнивая коэффициенты при  , , получаем следующую систему: , отсюда .

Окончательно  общее решение заданного уравнения  имеет вид: .

  1. f(x) , где и - многочлены степени и соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.
  2. Если число не является корнем характеристического уравнения для уравнения (5.1), то вид частного решения будет:

, (7.2)

где – неопределенные коэффициенты, а .

  1. Если число является корнем характеристического уравнения для уравнения (5.1) кратности , то частное решение лнду будет иметь вид:

, (7.3)

т.е. частное решение вида (7.2) надо умножить на . В выражении (7.3) - многочлены с неопределенными коэффициентами, причем их степень .

Пример 4. Указать вид частного решения для уравнения

.

Решение.

Характеристическое  уравнение имеет вид: . Его корни: , . Общее решение лоду имеет вид:

.

Правая часть  заданного уравнения имеет специальный  вид (случай 3): f(x) . Число является корнем характеристического уравнения кратности . Коэффициент при есть многочлен первой степени, а при - нулевой степени, поэтому степень многочленов с неопределенными коэффициентами надо брать . Итак, вид частного решения:

.

Далее коэффициенты могут быть определены по методу неопределенных коэффициентов.

Замечание. Если правая часть уравнения (7.1) есть сумма двух функций f(x) = f1(x) + f2(x), где каждая из f1(x), f2(x) имеют специальный вид (случаи 1-3), то частное решение подбирается в виде суммы: , где есть частное решение для уравнения с правой частью f1(x), а есть частное решение для уравнения с f2(x). Аналогично находятся частные решения в случае, когда правая часть есть алгебраическая сумма конечного числа функций специального вида, рассмотренного в случаях 1-3.

 

§8. Метод вариации произвольных постоянных (метод Лагранжа).

Непосредственное  нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного  уравнения:

, (8.1)

где – линейно независимые на некотором интервале X решения лоду, а - произвольные постоянные. Будем искать частное решение лнду в форме (8.1), считая, что – не постоянные, а некоторые, пока неизвестные, функции от :

. (8.2)

Продифференцируем равенство (8.2):

. (8.3)

Подберем функции  и так, чтобы выполнялось равенство: . Тогда вместо (8.3) будем иметь:

. (8.4)

Продифференцируем это выражение еще раз по . В результате получим:

. (8.5)

Подставим (8.2), (8.4), (8.5) в лнду 2-го порядка  f(x):

 f(x)

или

 f(x). (8.6)

Так как - решения лоду , то последнее равенство (8.6) принимает вид: f(x).

Таким образом, функция (8.2) будет решением лнду в том случае, если функции и удовлетворяют системе уравнений:

(8.7)

Так как определителем этой системы является определитель Вронского для двух линейно независимых на X решений соответствующего лоду, то он не обращается в ноль ни в одной точке интервала X. Следовательно, решая систему (8.7), найдем и : и . Интегрируя, получим:

,
,

где - произвольные постоянные.

Возвращаясь в  равенство (8.2), получим общее решение  неоднородного уравнения:

.

 

Пример. Решить уравнение: .

Решение.

Соответствующее однородное уравнение  . Интегрируя его, получим общее решение: . Итак , двумя линейно независимыми решениями, образующими общее решение, являются функции и .

Предположим теперь, что общим решением заданного уравнения является выражение .

Для определения  функций  и имеем систему уравнений:

Откуда получаем , . Следовательно, общее решение заданного уравнения есть: .

 

 

Линейные  уравнения высших порядков

§1. Однородное уравнение.

Линейным уравнением n-го порядка называется уравнение вида:

 f(x). (1.1)

Если при  всех рассматриваемых значениях  функция f(x) равна нолю, то это уравнение называется однородным, в противном случае – неоднородным.

Предполагаем, что коэффициенты и свободный член f(x) определены и непрерывны в интервале . Тогда уравнение (1.1) имеет единственное решение , определенное во всем интервале и удовлетворяющее начальным условиям: , причем начальные данные можно задавать произвольно, а нужно брать из интервала .

Линейное однородное дифференциальное уравнение (лоду) всегда имеет нулевое решение .

Для построения общего решения лоду достаточно знать  линейно независимых в интервале частных решений , т.е. таких решений, для которых тождество

,
,

где - постоянные числа, может выполняться только при . Такая система решений называется фундаментальной. Чтобы система решений лоду была фундаментальной, необходимо и достаточно, чтобы ее определитель Вронского

был отличен от нуля хотя бы в одной точке из интервала . В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала .

Если найдена  фундаментальная система решений  лоду, то формула

, (1.2)

где - произвольные постоянные, дает общее решение этого уравнения в области .

 

§2. Линейное однородное дифференциальное уравнение с постоянными  коэффициентами.

Это уравнение  имеет вид:

, (2.1)

где - постоянные вещественные числа. Это уравнение имеет фундаментальную систему решений , определенную при всех и состоящую из степенных, показательных и тригонометрических функций. Соответствующее ей общее решение:

определено в области , т.е. во всем пространстве .

Построение  фундаментальной системы решений  лоду делается методом Эйлера, который  состоит в том, что частное  решение лоду ищется в виде , где - некоторое число, подлежащее определению. Подставляя эту функцию в уравнение (2.1), после сокращения на получим характеристическое уравнение:

Его корни называются характеристическими числами уравнения (2.1). Различают три случая.

  1. Все корни характеристического уравнения различны и вещественны. Обозначим их через . Тогда фундаментальной системой решений будут: , а общее решение имеет вид: .
  2. Все корни характеристического уравнения различны, но среди них имеются комплексные. Пусть – комплексный корень характеристического уравнения. Тогда тоже будет корнем этого уравнения. Этим двум корням соответствуют два линейно независимых частных решения: . Записав линейно независимые частные решения, соответствующие другим сопряженным парам комплексных корней и всем вещественным корням, получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными коэффициентами даст общее решение уравнения (2.1).
  3. Среди корней характеристического уравнения имеются кратные. Пусть - вещественный k-кратный корень. Тогда ему соответствует линейно независимых частных решений вида , а в формуле общего решения – выражение вида . Если - комплексный корень характеристического уравнения кратности , то ему и сопряженному с ним корню той же кратности соответствуют линейно независимых частных решений вида:

Информация о работе Дифференциальные уравнения 2-го порядка