Автор: Пользователь скрыл имя, 25 Марта 2015 в 18:38, лабораторная работа
Цель данной работы – рассмотреть, как объясняет современная наука, и в частности, синергетика процесс самоорганизации систем живой и неживой природы.
ВВЕДЕНИЕ 3
1. ПОНЯТИЕ САМООРГАНИЗАЦИИ 4
2 РАЗВИТИЕ НЕЖИВОЙ И ЖИВОЙ ПРИРОДЫ 8
3. ПРОБЛЕМЫ САМООРГАНИЗАЦИИ СИСТЕМ 13
ЗАКЛЮЧЕНИЕ 16
СПИСОК ЛИТЕРАТУРЫ 17
Самоорганизация характеризуется возникновением внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Причем понятия функция и структура системы тесно взаимосвязаны; система организуется, т.е. изменяет структуру ради выполнения функции.
Вопрос о взаимоотношении структуры и функции – один из древних и традиционных в биологии. Аристотель, задавая вопрос «ради чего существует орган?», отвечал: «ради выполнения определенной цели», т.е. функции. Для биологических объектов понятия функции и цели идентичны. Так, под функцией понимается, например, физиологическое отправление.
Рассматривая структуру и функцию, предпочтение отдают первичности в изменении функции. Однако наиболее правильно рассматривать диалектическую взаимосвязь и взаимообусловленность их изменений в процессе эволюции (изменение среды требует изменения функции; а она, в свою очередь, влияет на изменение структуры).
Растительное и животное царство дает множество убедительных примеров такой взаимообусловленности.
Так, выход растений на сушу ознаменовался приобретением комплекса морфофизиологических новшеств, защитных покровов, проводящей системы, дифференциацией тела на органы и т.д. Благодаря этим изменениям, прежде всего, было достигнуто уменьшение потери воды от испарения и усиление ее движения по растению. Здесь трудно сказать, что чему предшествовало, морфологические или физиологические изменения. В то же время очевидно, что «заказ» на уменьшение отрицательных последствий недостатка воды повлек за собой отбор растений на развитие защитных покровов и проводящей системы в наземных условиях.
В данном случае речь идет о процессе самоорганизации, где можно выделить причину и следствие, указать связи их с внешней средой: внешняя среда изменяет функцию, функция изменяет структуру. По мере усложнения внутренней организации функциональные возможности организмов усиливаются[1, .с. 92].
Функциональные особенности изменяются несколько быстрее, чем структурные. Одним из примеров влияния функциональных преобразований на структуру растения могут служить листья и преобразование структуры черешка изменением его функции: у листа после длительной самостоятельной жизни в укорененном состоянии перестраиваются исторически сложившиеся функции; при этом черенок приобретает функции стебля, усиливается его проводящая и механическая активность.
Структура и функция – неотъемлемые свойства живой природы, они связаны в онто- и филогенезе. Любой орган обладает множественностью функций. Если из множеств функций, например, корня растений (проведение веществ или их запасение, образование придаточных почек, прикрепление, синтез и т.п.) одна окажется главной, то строение его в филогенезе изменится сообразно новой функции. С другой стороны, проявление любой функции растений одного и того же вида меняется количественно, причем различия часто наследственно обусловлены. На этой основе может происходить отбор по степени выражения данного свойства. Например, у одних растений по такому принципу усилилась присасывающая функция корней (паразиты), у других – опорные функции.
Взаимосвязь изменения структуры и функции в онто- и филогенезе способствует повышению выживаемости и конкурентоспособности. Для растений функция – единое физиологическое отправление, необходимое для выживания и размножения растений в онтогенезе (например, фотосинтез, дыхание, движение). Отбор направлен на поиски наиболее эффективных механизмов, реализующих необходимую функцию, т.е. на поиски архитектур системы[4, с. 182].
Именно в структуре биологически активного вещества эволюция закодировала его способность выполнять строго определенную биологическую функцию.
Функциональная роль биологических молекул задается их пространственной структурой – расположением в пространстве входящих в структуру атомов. Можно привести множество других примеров.
Для изучения процесса развития необходимо знать характер изменения структур во времени, их динамические параметры. Надо также уметь вскрывать закономерности взаимосвязи между структурой и проявляемой системой функцией.
До недавнего времени естествознание и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета коллективных эффектов и исследования процессов образования устойчивых структур и самоорганизации. В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.
Задача синергетики – выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен).
Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем – энергетических, экологических, многих других, требующих привлечения огромных ресурсов.
Философско-методологический анализ проблем глобального эволюционизма неизбежно приводит к постановке фундаментального вопроса: существуют ли законы эволюционного процесса, представляющие собой определенную конкретизацию диалектической концепций развития и в то же время общие для всех структурных уровней природной действительности?
Хотя эта проблема в настоящее время еще далека от решения, все же есть определенные основания допускать существование законов и закономерностей прогрессивного развития в природе, охватывающих все основные этапы – космогонический, геологический, биологический, наряду со специфическими законами и закономерностями, присущими каждому из них. Это могут быть, во-первых, частнонаучные законы или закономерности, которые возможно экстраполировать на целостные процессы эволюции природной действительности (скажем, закон возрастания энтропии или определенные «биоаналогии», имеющие достаточно общее значение).
Во-вторых, идея глобального эволюционизма получает поддержку со стороны общенаучных концепций. Так, начавшаяся в последние годы разработка генетических аспектов общей теории систем позволяет предполагать, что некоторые сформулированные в ее рамках закономерности могут обладать весьма широкой сферой применимости, в частности, охватывать определенные черты эволюции всей исследуемой природной действительности. Изучению процессов эволюции неживой и живой природы, а также прогресса общества может содействовать дальнейшая разработка концепции самоорганизации[2, с. 88].
Наконец, в-третьих, возможно предположить, что существуют такие типы достаточно общих эволюционных законов и закономерностей, которые будут выявлены на основе комплексного анализа процессов развития в масштабах всей системы наук о природе. Пока, конечно, преждевременно обсуждать вопрос, будут ли законы, сформулированные первоначально в рамках общенаучной картины мира, включаться далее в такую форму организации теоретического знания, какой является теория (система теорий), или в иную, до сих пор мало исследованную форму междисциплинарного и общенаучного знания – учение (примером которой может служить учение В.И. Вернадского о биосфере), или же входить и в состав систем теорий, и в состав учений разной степени общности. Во всяком случае, очевидно, что потребности как теоретического, так и мировоззренческого плана будут стимулировать дальнейшее обоснование идеи глобального эволюционизма.
Информационная концепция развития систем любой природы, в основе которой лежат категории информатики – информация, энтропия, информационные процессы и их связь с эволюционными процессами, по-видимому, может рассматриваться как одна из естественнонаучных конкретизации общей теории развития. Самоорганизация как основа эволюции
Несмотря на то, что идеи эволюции, начиная от космогонической гипотезы Канта – Далласа и кончая эволюционной теорией Дарвина, получили широкое признание в науке, тем не менее они формулировались скорее в интуитивных, чем в теоретических терминах. Поэтому в них трудно было выявить тот общий механизм, посредством которого осуществляется эволюция. Как отмечалось выше, главным препятствием здесь служило резкое противопоставление живых систем неживым, общественных – природным. В основе такого противопоставления лежали слишком абстрактные, а потому неадекватные понятия и принципы классической термодинамики изолированных и равновесных систем. Именно поэтому эволюция физических систем связывалась с их дезорганизацией, что противоречило общепринятым в биологических и социальных науках представлениям об эволюции.
Чтобы разрешить возникшее глубокое противоречие между классической термодинамической эволюцией, с одной стороны, и эволюцией биологической и социальной – с другой, физики вынуждены были отказаться от упрощенных понятий и схем и вместо них ввести понятия об открытых системах и необратимых процессах. Благодаря этому оказалось возможным развить новую нелинейную и неравновесную термодинамику необратимых процессов, которая стала основой современной концепции самоорганизации.
Многие объекты живой природы, а также динамические системы неживой природы, проявляют свойство самоорганизации. Самоорганизация является следствием самодвижения материи. Таким образом, самоорганизация является синонимом развития. Это свойство материи еще недостаточно познано для того, чтобы использоваться в практических целях. Тем не менее первые важные открытия в этой области уже сделаны.
С новой точки зрения рассмотрены такие привычные и хорошо изученные объекты природы, как кристалл, живая клетка и Земля, - все это различные формы существования постоянного электромагнитного поля, именно оно способно к самоорганизации и развитию.
В связи с исследованием термодинамики
открытых систем и изучением процессов самоорганизации
в неравновесных системах стали понятными
физические причины самоорганизации в
Важное в изучении проблемы самоорганизации принадлежит синергетике, которая вместо констатации принципиальных различий между живой и неживой природой позволяет увидеть те общие принципы, которые соединяют то и другое.
Дальнейшая разработка концепции самоорганизации может содействовать изучению процессов эволюции неживой и живой природы, а также прогресса общества.
Информация о работе Самоорганизация в живой и неживой природе