Автор: Пользователь скрыл имя, 13 Декабря 2012 в 19:32, контрольная работа
Эволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина [3, cc.53-54]. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени).
Под самоорганизацией мы понимаем необратимый процесс, приводящий в результате кооперативного действия подсистем к образованию более сложных структур всей системы. Самоорганизация — элементарный процесс эволюции, состоящий из не ограниченной последовательности процессов самоорганизации.
1. Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе…………….3
2. Современные подходы к анализу сложных самоорганизующихся систем. Синергетика……………………………………………………………………….6
3. Экономика с точки зрения синергетики…………………………………….10
Список литературы……………………………………………………………..14
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ПСИХОЛОГИИ И СОЦИАЛЬНОЙ РАБОТЫ
Факультет прикладной психологии ОСП
Кафедра философии, культурологи и иностранных языков
Самостоятельная работа
По дисциплине Естествознание
На тему «Самоорганизация в живой и неживой природе»
САНКТ-ПЕТЕРБУРГ
2012
1. Основные свойства
2. Современные подходы
к анализу сложных
3. Экономика с точки
зрения синергетики………………………………
Список литературы…………………………………
Эволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина [3, cc.53-54]. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени).
В физике описание динамических процессов осуществляется с помощью систем дифференциальных уравнений. Традиционно как примеры динамических процессов почти во всех учебниках приводятся: движение маятника или движение одного тела в поле тяготения другого. Эти примеры, однако, являются лишь частным случаем динамических систем - это, так называемые консервативные системы. Их отличительной чертой являет обратимость во времени - система дифференциальных уравнений, описывающая динамический процесс, инвариантна относительно обращения времени [1, c.59-63]. Обратимость процессов во времени имеет интересные последствия.
Консервативные динамические системы принято делить на интегрируемые и неинтегрируемые. Система дифференциальных уравнений проинтегрирована, если найден полный набор ее первых интегралов. Первым интегралом называют функцию, которая сохраняет постоянное значение на всей траектории, определяемой уравнениями движения. Первым интегралом является, например, полная энергия системы. Динамическая система называется интегрируемой, если все ее первые интегралы - аналитические функции координат и скоростей. Первые интегралы позволяют найти состояние системы в любой момент времени, если известно ее состояние в какой-либо предыдущий момент времени. Для интегрируемых систем, т.о. задание состояния системы в один из моментов времени фактически соответствует заданию всей прошлой и будущей истории системы. Это позволяет говорить о предопределенности (детерминированности) поведения интегрированной системы. Так, указанное выше движение одного тела в поле тяготения другого описывается двумя интегралами - интегралом энергии и импульса.
Число первых интегралов совпадает с числом независимых динамических переменных, описывающих состояние системы, которые называются степенями свободы. Структура любой системы характеризуется распределением энергии по внутренним степеням свободы. В интегрируемых консервативных системах это распределение энергии либо остается неизменным, либо периодически меняется, - т.е. в интегрированных системах не происходит смены структур, и система рано или поздно возвращается в начальное состояние. Иными словами интегрируемые консервативные системы не эволюционируют.
В конце прошлого века (1892г.) Пуанкаре
доказал существование неинтегр
Примером неинтегрированной
Характерной чертой неинтегрированных систем является отсутствие симметрии между прошлым и будущим - неинтегрированная система эволюционирует во времени. Эволюционные свойства неинтегрируемых систем определяются в основном характером взаимодействия в системе. Систему, в которой стохастичность траекторий есть следствие внутренних взаимодействий, а не случайных внешних воздействий называют динамическим хаосом - движения частиц воспринимаются наблюдателем как случайные блуждания.
Другим классом физических систем являются диссипативные системы. Диссипативные физические системы также приводят к необратимым процессам. "Ярче всего различие между консервативными и диссипативными системами проявляется при попытке макроскопического описания последних, когда для определения мгновенного состояния системы используются такие коллективные переменные, как температура, концентрация, давление и т.д."[1, c.64]. При рассмотрении поведения этих переменных выясняется, что они не инвариантны относительно операции обращения времени. В качестве простейших примеров диссипативных процессов обычно рассматриваются теплопроводность и диффузия.
В случае изолированных систем, в
которых нет никаких обменов
с внешней средой, необратимость
выражена знаменитым вторым законом
термодинамики, в соответствии с
которым существует функция переменных
состояния системы, изменяющаяся монотонно
в процессе приближения к состоянию
термодинамического равновесия. Обычно
в качестве такой функции состояния
выбирается энтропия, и второе начало
формулируется так: "производная
энтропии по времени не отрицательна".
Традиционно это утверждение
интерпретируется как "тенденция
к возрастанию
В случае неизолированных систем, которые обмениваются с внешней средой энергией или веществом, изменение энтропии будет обусловлено процессами внутри системы (производство энтропии) и обменами с внешней средой (поток энтропии). Если производство энтропии в соответствии со вторым законом термодинамики неотрицательно, то "поток энтропии" может быть как положительным, так и отрицательным. Если поток энтропии отрицательный, то определенные стадии эволюции могут происходить при общем понижении энтропии. Последнее, согласно традиционной трактовке, означает, что "в ходе эволюции разупорядоченность будет уменьшаться за счет оттока энтропии"[1, c.80].
Под самоорганизацией мы понимаем необратимый процесс, приводящий в результате кооперативного действия подсистем к образованию более сложных структур всей системы. Самоорганизация — элементарный процесс эволюции, состоящий из не ограниченной последовательности процессов самоорганизации. Термин "самоорганизация" используется для обозначения диссипативной самоорганизации, т. е. образования диссипативных структур. Наряду с диссипативной самоорганизацией существуют и другие формы самоорганизации, такие как консервативная самоорганизация (образование структур кристаллов, биополимеров и т. д.) и дисперсионная самоорганизация (образование солитонных структур). [10, с. 491]
Для объяснения процессов самоорганизации
рассматриваются открытые системы,
которые способны обмениваться с
окружающей средой веществом, энергией
или информацией. Открытая система
не может быть равновесной, потому ее
функционирование требует непрерывного
поступления энергии и вещества
из внешней среды, вследствие чего неравновесие
в системе усиливается. В конечном
итоге прежняя взаимосвязь
Попытка выработки общей концепции объясняющей явления самоорганизации систем получила название "синергетика". Термин "синергетика" происходит от греческого "синергеа" - содействие, сотрудничество. Предложенный Г. Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого. Под этим названием объединяются различные направления исследований в различных науках - в физике, биологии, химии, математике. В математике развивается теория динамического хаоса, школа И. Пригожина развивает термодинамический подход к самоорганизации с точки зрения диссипативных структур, а Г. Хакен понимает под структурой состояние, возникающее в результате когерентного (согласованного) поведения большого числа частиц.
Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, — систем, способных к самоорганизации, саморазвитию. Основные свойства самоорганизующихся систем — открытость, нелинейность, диссипативность.
Открытые системы —
это такие системы, которые поддерживаются
в определенном состоянии за счет
непрерывного притока извне вещества,
энергии или информации. Постоянный
приток вещества, энергии или информации
является необходимым условием существования
неравновесных состояний в
Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т. е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какою-то другою процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.
Открытые неравновесные
системы, активно взаимодействующие
с внешней средой, могут приобретать
особое динамическое состояние —
диссипативность, которую можно
определить как качественно своеобразное
макроскопическое проявление процессов,
протекающих на микроуровне. Неравновесное
протекание множества микропроцессов
приобретает некоторую
Становление самоорганизации
во многом определяется характером взаимодействия
случайных и необходимых
В переломный момент
самоорганизации принципиально
неизвестно, в каком направлении
будет происходить дальнейшее
развитие: станет ли состояние
системы хаотическим или она
перейдет на новый, более
Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы — это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации — от низших и простейших к высшим и сложнейшим (человек, общество, культура)
В конце 1980-х гг. ученые начинают
обсуждать возможность
Первые работы шли по пути перевода новых математических понятий и терминов на диалекты социальных наук. Во многом результаты этого направления опирались на знаменитые труды И. Пригожина и его школы. [11,c. 15]
Информация о работе Самоорганизация в живой и неживой природе