Источники энергии звезд и вторичный нуклеосинтез в них

Автор: Пользователь скрыл имя, 11 Марта 2012 в 20:46, курсовая работа

Краткое описание

Проблема происхождения атомов возникла при установлении природы источника энергии Солнца и звезд и при разработке теории Большого Взрыва Вселенной. Проблема источника энергии на Солнце была решена в конце 30-х годов XX века Х. Бете и К. Вейцзекером. На основе расчетов они пришли к выводу, что механизм генерации энергии на Солнце и в других звездах связан с образованием ядер гелия из четырех протонов: р-р-цикл и CNO-цикл. Однако расчеты показали, что в недрах звезд за время существования Вселенной может образоваться относительно мало гелия ( 2%) по сравнению с наблюдаемой его распространенностью ( 25%).

Оглавление

1.Введение……………………………………………………………. 3
2. Звездная эволюция…………………................................................ 4
3. Источники энергии звезд………………………………………….. 8
4. Звездный нуклеосинтез……………………………………………. 12
4.1 Космологический нуклеосинтез…………………………………..12
4.2 Звезный нуклеосинтез…………………………………………….. 14
5. Вывод………………………………………………………………... 21
6. Список использованной литературы……………

Файлы: 1 файл

Правка после препода КСЕ.doc

— 254.00 Кб (Скачать)

 

 

                                    Источники энергии звезд

 

 

Наиболее очевидным свойством звезд является то, что они светятся, точнее, являются самосветящимися телами. За счет чего покрываются их энергетические потери? Этот вопрос возник, как только был сформулирован закон сохранения энергии, однако найти исчерпывающий ответ на него сумели лишь век спустя. Обычно думают, что главная трудность проблемы – в огромной мощности выделения энергии на Солнце и звездах. В действительности дело вовсе не в этом. Удельный темп энерговыделения на Солнце и в звездах более чем скромный. Так, в расчете на один грамм своего вещества Солнце ежесекундно выделяет всего по 2 эрга. По обыденным земным меркам это совершенно ничтожный темп энерговыделения – как в куче гниющих осенних листьев. В человеческом теле темп выделения энергии на четыре порядка (!) выше, чем в Солнце. Однако чтобы поддерживать такой уровень производства энергии, нам нужно трижды в день есть. А Солнце (и звезды) светят миллиарды лет, не питаясь.

       Итак, истинная проблема состоит в том, что звезды светят очень и очень долго. За это время они успевают высветить действительно огромные количества энергии. Откуда же она черпается? Как уже говорилось, вопрос был поставлен в 40-е годы XIX века, с открытием закона сохранения энергии. Сразу же стало ясно, что источником энергии в принципе может быть гравитация. Так, Роберт Мейер, один из отцов закона сохранения энергии, полагал, что Солнце светится за счет кинетической энергии выпадающего на него метеорного вещества. Любопытно, что в течение многих десятилетий гипотеза Мейера считалась чуть ли не смехотворной и упоминалась лишь как исторический курьез. Однако теперь мы знаем, что модернизированный вариант механизма Мейера – аккреция – играет в мире звезд важную роль.

       Другой пионер принципа сохранения энергии Герман Гельмгольц предположил, что свечение Солнца может поддерживаться его медленным вековым сжатием, что приводит, разумеется, к выделению гравитационной энергии. Вскоре вслед за Гельмгольцем Дж. Томсон (более известный нам как лорд Кельвин; титул лорда он получил за научные заслуги) уточнил его оценку времени такого сжатия, учтя неоднородность в распределении солнечного вещества вдоль радиуса. За счет такого, как мы теперь говорим, кельвиновского сжатия Солнце могло бы, заметно не меняясь, светить лишь десятки миллионов лет. Любопытно, что сам Кельвин, а вслед за ним и многие другие, рассматривали это как серьезный аргумент против правильности дарвиновских представлений о биологической эволюции, требовавшей по крайней мере на порядок больших времен. В конце XIX века вера в закон сохранения энергии была незыблема  – а никакого другого источника энергии звезд, кроме самогравитации, видно не было. Правда, оценки возраста Земли, получавшиеся средствами геологии, давали по крайней мере сотни миллионов лет, что указывало на необходимость поиска какого-то дополнительного источника солнечной энергии. Ситуация резко обострилась, можно сказать стала катастрофической, вскоре после открытия радиоактивности. Первые же надежные определения возраста Земли показали, что он не менее 1.5 миллиарда лет (современная оценка – 4.6 миллиарда). Отыскание источника энергии Солнца и звезд стало одной из жгучих проблем естествознания. К середине 20-х годов выяснилось, что таким источником в принципе могли бы служить ядерные реакции, ведущие к превращению водорода в гелий. Масса четырех протонов слегка превосходит массу ядра атома гелия – альфа-частицы, так что при таком процессе превращалось бы энегрию около 0.7% массы покоя. Но по соотношению Эйнштейна E = mc2 при превращении в энергию даже очень малой массы m выделяется колоссальная энергия, так как множитель пропорциональности – квадрат скорости света c2 – очень велик (в системе СГС — порядка 1021). Горячим проповедником идеи термоядерного горения водорода в 20-е годы был фактический создатель теории внутреннего строения звезд А.Эддингтон. Однако поначалу эта идея встретила серьезные возражения Резерфорда и его коллег. Температура в центре Солнца, рассчитанная самим же Эддингтоном (20 млн кельвинов) и оказавшаяся, как мы теперь твердо знаем, близкой к действительной (15.5 млн кельвинов), явно недостаточна для того, чтобы за счет кинетической энергии своего теплового движения протоны могли преодолеть электростатическое кулоновское отталкивание и сблизиться настолько, чтобы вступили в игру ядерные силы. Расхождение было очень серьезным – на три порядка по температуре. "Пойдите поищите местечко погорячее" – вот что постоянно слышал Эддингтон от своих коллег-физиков... Решение проблемы пришло с развитием квантовой механики. Согласно принципу неопределенности Гейзенберга, говорить о точном местоположении частицы не имеет смысла – она как бы размазана по некоторой области пространства и с разной вероятностью может быть обнаружена в разных местах. Это, в частности, делает возможным присутствие частицы и в тех областях пространства, где классические законы сохранения энергии и импульса это строго запрещают. В итоге непреодолимый для классической частицы кулоновский потенциальный барьер становится как бы "полупрозрачным" (так называемый туннельный эффект). Первыми на роль этого эффекта для решения загадки источников звездной энергии в 1929 г. указали Р.Аткинсон и Ф.Хаутерманс. Созданная в это же примерно время Г.А.Гамовым теория альфа-распада дала математический аппарат, положенный в конце тридцатых годов в основу количественной теории термоядерных реакций в недрах звезд. В 1937–1939 годах появляется, наконец, долгожданное окончательное решение давней загадки источника звездной энергии (Г.Бете и – независимо – К.Вейцзекер). Слить четыре протона в альфа-частицу за один акт практически невозможно: вероятность четверного столкновения пренебрежимо мала, поэтому процесс идет в несколько шагов. Детальный анализ всех возможных при температурах порядка 20 млн кельвинов ядерных реакций в газе космического химического состава привел к открытию двух возможных способов построить альфа-частицу из протонов. Первый способ – это знаменитый CN-цикл, или цикл Бете. Вот эта цепочка реакций:

 

 

 

Ее итогом является, очевидно, слияние четырех протонов в a-частицу, а углерод, азот и кислород выступают лишь как катализаторы. При всей кажущейся очевидности последнего утверждения оно нуждается в оговорке, имеющей важное значение для астрономов: на начальном этапе работы цикла, пока еще не установился стационарный режим, большая часть углерода превращается в азот, а оставшийся углерод приобретает специфический изотопный состав, резко отличающийся от того, который имеется на Земле и в атмосфере Солнца. По этим признакам можно с уверенностью опознавать вещество, подвергшееся переработке в CN-цикле.

Второй способ синтеза альфа-частиц в звездах – так называемая pp-цепочка:

 

 

Первые две реакции происходят по два раза, так как надо выработать два ядра 3He, прежде чем сможет произойти заключительная реакция, синтезирующая 4He. Первоначально считалось, что наше Солнце вырабатывает свою энергию по первой схеме, т.е. за счет цикла Бете. В 50-е годы, однако, стало ясно, что это не так, и преобладающую роль играют pp-цепочки. Причина в том, что, как показал более внимательный анализ, центральная температура Солнца немного ниже, чем принималось ранее, а рост темпа выделения энергии с температурой у цикла Бете происходит существенно быстрее, чем для pp-цепочек. Однако в звездах с массами, превосходящими 1.2 массы Солнца, доминирует в выделении энергии CN-цикл. Простой энергетический расчет показал, что в Солнце выгорание водорода в его центральной части займет около 10 млрд лет. Проблема источников энергии Солнца и подавляющего большинства звезд, в частности, всех звезд так называемой главной последовательности, была тем самым окончательно решена. Однако ее решение сразу же дало и другой, важнейший для всей астрономии результат: стало ясно, что рождение звезд – это непрерывный процесс, который происходит буквально на наших глазах. Так как запасы ядерной энергии, очевидно, пропорциональны массе звезды, а темп ее расходования – светимость звезды – пропорциональна, грубо говоря, кубу массы, ясно, что все массивные звезды должны быть по астрономическим меркам совсем молодыми. Взяв в качестве примера массивную звезду Y Лебедя, Бете в своей эпохальной работе пришел к выводу, что возраст этой звезды должен быть менее 3.5·107 лет. "Приходится предположить, что Y Лебедя и подобные ей другие массивные звезды родились сравнительно недавно" – писал он в 1939 г. Отождествление источников энергии звезд открыло прямой путь к пониманию эволюции звезд – другому великому достижению естествознания XX века.

     Поскольку водород – основная составляющая звездного вещества (около 70% по массе) и поскольку при синтезе гелия выделяется большая часть ядерной энергии, запасенной в веществе, основную часть своей жизни звезды светят, сжигая водород. Последующие стадии ядерного горения, начинающиеся с весьма нетривиального процесса – слияния трех альфа-частиц в ядро 12C – важны, пожалуй, в первую очередь не с точки зрения энергетики, в этом отношении ничего принципиально нового здесь нет. Гораздо важнее другое: как выяснилось в 50-е годы, на этих последующих этапах ядерной жизни звезд произошел (и продолжает происходить) синтез всех "тяжелых" элементов, кроме водорода и частично гелия. Эти последние достались нам от Большого Взрыва. Поскольку именно тяжелые элементы – это основа жизни, без преувеличения можно сказать, что первым принципиальным шагом к созданию возможности появления жизни во Вселенной стали те ядерные процессы, которые происходят в недрах звезд после выгорания там водорода.

 

 

                                          Звездный  нуклеосинтез

 

 

        Нуклеосинтез - процесс, в котором ядра сложных, тяжелых химических элементов, таких, как кислород, железо и золото, образуются из более простых и легких атомных ядер (как правило, из водорода). На ранней стадии расширения Вселенной, когда ее вещество было плотным и горячим, везде существовали подходящие условия для нуклеосинтеза. Позже он происходил лишь в недрах звезд, в основном более массивных, чем наше Солнце. В обоих случаях основным процессом являются ядерные реакции, т. е. реакции, в которых при взаимодействии атомных ядер одного или нескольких типов возникают ядра нового типа. Эти реакции не только создали атомы, из которых состоим мы сами и наша планета; они же служат источником энергии для Солнца и прочих звезд.

       Нуклеосинтез, или нуклеогенез, нужно отличать от бариогенеза, т. е. от процесса, протекавшего в еще более ранней Вселенной, в котором составные части атомного ядра (протоны и нейтроны) формировались из кварков — наиболее фундаментальных частиц вещества.

                                 

                                 Космологический нуклеосинтез.

 

А.Пензиас и Р.Уилсон, обнаружив в 1965, что космическое пространство заполнено микроволновым излучением, подтвердили предсказание, сделанное почти за 20 лет до этого Р.Альфером, Р.Херманом и Г.Гамовым, которые теоретически изучали ядерные реакции в очень молодой Вселенной. Открытие реликтового микроволнового излучения доказало, что 10-20 млрд. лет назад Вселенная была очень плотной и горячей. Ее температура превышала 1 000 000 000 К, а плотность была как в недрах Солнца — именно такие условия требуются для ядерных реакций.

        Выяснив, что температура реликтового излучения составляет 2,75 К, астрономы определили типы и интенсивность ядерных реакций в те далекие времена. Почти все эти реакции удалось осуществить в лаборатории и определить, с какой интенсивностью происходят реакции при разных температурах, сколько при этом выделяется энергии и какие получаются продукты. Эти данные позволили разобраться в звездном нуклеогенезе, о котором пойдет речь в следующем разделе. Основными продуктами ядерных реакций в молодой Вселенной были водород и гелий в пропорции по массе примерно 3:1. Сформировалось также мизерное количество тяжелого водорода (дейтерия, D или 2H), легкого гелия (3He) и лития (Li): всего несколько миллионных долей от общей массы. Поэтому самые первые звезды должны были состоять практически только из водорода и гелия. Тех первых звезд уже нет, но самые старые из сохранившихся звезд содержат менее 0,001% всех прочих элементов. А вот у Солнца и более молодых звезд эти элементы составляют по массе уже около 2%. Реакции в ранней Вселенной остановились на водороде и гелии с небольшим количеством примесей, потому что не существует устойчивых атомных ядер, содержащих 5 или 8 протонов и нейтронов. Именно поэтому из водорода (с одним протоном) и гелия (с двумя протонами и двумя нейтронами) нельзя составить более сложные ядра. К тому времени, когда Вселенная охладилась настолько, что стали возможны и другие реакции, она так расширилась, что низкая плотность вещества сделала крайне маловероятным одновременное столкновение трех и более ядер для рождения более сложных элементов. Важная особенность космологического нуклеосинтеза состоит в том, что количество образовавшегося гелия, дейтерия и лития зависит от средней плотности Вселенной.

При высокой плотности частицы чаще сталкиваются, поэтому многие протоны и нейтроны объединяются в ядра гелия и остается очень мало дейтерия; при низкой плотности образуется больше дейтерия, но меньше гелия и лития. С другой стороны, плотность Вселенной определяет ее судьбу: будет ли расширение продолжаться вечно или остановится и сменится сжатием. Измеренное содержание гелия, дейтерия, 3He и лития показало, что плотности обычного вещества недостаточно, чтобы остановить расширение Вселенной. Если расширение Вселенной уравновешено гравитацией всего вещества, значит, основная его часть состоит из неизвестных частиц, отличных от обычных протонов, нейтронов и электронов. Предложено много кандидатов на роль этого неизвестного вещества, но ни один из них пока не наблюдался в лаборатории.

                                        

                                            Звездный нуклеосинтез.

 

Плотность и температуру в центре Солнца можно рассчитать, используя тот факт, что в каждой точке этой звезды давление газа должно уравновешивать тяжесть вышележащих слоев. Условия в Солнце оказываются подходящими для ядерных реакций. Звезды образуются, когда облака межзвездного газа сжимаются под действием гравитации. Облака с массой более 8% массы Солнца разогреваются от сжатия настолько, что в них начинают протекать ядерные реакции и они становятся звездами. Эти процессы иногда называют не ядерными реакциями, а "ядерным горением". Пока звезда формируется, газ в облаке движется турбулентно и хорошо перемешивается. Поэтому звезда начинает жизнь химически однородной. Затем она уже не перемешивается вплоть до поздних стадий эволюции; поэтому возникшие в ядерных реакциях элементы попадают из недр звезды на поверхность лишь в самом конце ее жизни. Солнце еще не достигло этой стадии.

     Первым сгорает водород. Поскольку его ядра состоят лишь из одного протона, они взаимодействуют при довольно низких температурах, около 107 К. Возможны две цепочки реакций. В одной, названной протон-протонным циклом, протоны взаимодействуют непосредственно. Четыре протона образуют одно ядро гелия. В более сложной цепочке реакций, названной CNO-циклом, также формируется ядро гелия из четырех протонов, но при этом углерод, азот и кислород служат катализаторами. В CNO-цикле, кроме гелия, образуется дополнительный азот — важный элемент для формирования протеинов (т.е. белков). Эти две цепочки реакций записаны ниже; символы b- и b+ означают электрон и позитрон, ne — нейтрино, а g — гамма-лучи:

 

 

 

 

От превращения водорода в гелий по любому из этих циклов выделяется столько энергии (7Ч1013 Дж/кг), что одного грамма водорода хватило бы для езды на автомобиле в течение 10 лет. Поскольку водород горит медленно и выделяет так много энергии, он поддерживает свечение звезды около 90% времени ее жизни. Наше Солнце сжигает водород уже 4,5 млрд. лет и оставшихся запасов ему хватит еще примерно на столько же. Более массивные звезды сжигают свой запас быстрее — всего за миллионы лет.

Когда водород заканчивается, звезды с массой менее 40% солнечной умирают, превращаясь в тусклые и компактные белые карлики, состоящие из гелия. У более массивных звезд центральная область сжимается, и температура там достигает 108 К. При такой температуре возможно взаимодействие ядер гелия, а высокая плотность звездных недр делает вполне вероятной встречу трех или четырех таких ядер с реакцией рождения углерода или кислорода:

 

 

Образуется примерно равное количество углерода и кислорода, и это очень удачно, поскольку оба элемента биологически важны.

У звезд с массой менее 6-8 масс Солнца этап вспышки гелия (длящийся всего несколько процентов от времени горения водорода) фактически является последним в их жизни. Часть гелия, азота, углерода и кислорода при этом выносится на поверхность. Яркость звезды увеличивается, она раздувается и сбрасывает оболочку в виде планетарной туманности, пополняя межзвездную среду этими элементами. Ядро звезды сохраняется в виде углеродно-кислородного белого карлика.

У звезд с начальной массой более 6-8 масс Солнца продолжается сжатие ядра, и рост температуры в нем стимулирует дальнейшие ядерные реакции, рождающие широкую гамму новых элементов. Сначала сгорает углерод, давая в основном неон и натрий. Затем сгорает неон, порождая среди прочих элементов магний и алюминий. Затем горит кислород, давая среди прочего кремний и серу. Наконец, горит кремний, превращаясь в железо и близкие к нему элементы (никель, кобальт, марганец. Эти реакции происходят при температуре около 109 К. В них выделяется сравнительно немного энергии, причем большая ее часть уходит в виде нейтрино. Эти последние стадии горения длятся всего несколько тысяч лет из более чем миллиона лет жизни массивной звезды.

Каждая из описанных до сих пор ядерных реакций поддерживает излучение звезды. Но ядра железа связаны крепче всех прочих атомных ядер, поэтому их дальнейшие превращения уже не могут дать выхода энергии. Однако с поверхности звезды энергия продолжает уходить, так что может случиться катастрофа, когда в результате горения кремния сформируется железное ядро звезды слишком массивное, чтобы сопротивляться действию гравитации. Его предельная масса, впервые рассчитанная в 1931 С.Чандрасекаром, лежит в диапазоне от 1,1 до 1,4 масс Солнца.

Информация о работе Источники энергии звезд и вторичный нуклеосинтез в них