Автор: Пользователь скрыл имя, 11 Марта 2012 в 20:46, курсовая работа
Проблема происхождения атомов возникла при установлении природы источника энергии Солнца и звезд и при разработке теории Большого Взрыва Вселенной. Проблема источника энергии на Солнце была решена в конце 30-х годов XX века Х. Бете и К. Вейцзекером. На основе расчетов они пришли к выводу, что механизм генерации энергии на Солнце и в других звездах связан с образованием ядер гелия из четырех протонов: р-р-цикл и CNO-цикл. Однако расчеты показали, что в недрах звезд за время существования Вселенной может образоваться относительно мало гелия ( 2%) по сравнению с наблюдаемой его распространенностью ( 25%).
1.Введение……………………………………………………………. 3
2. Звездная эволюция…………………................................................ 4
3. Источники энергии звезд………………………………………….. 8
4. Звездный нуклеосинтез……………………………………………. 12
4.1 Космологический нуклеосинтез…………………………………..12
4.2 Звезный нуклеосинтез…………………………………………….. 14
5. Вывод………………………………………………………………... 21
6. Список использованной литературы……………
2
1.Введение……………………………………………………
2. Звездная эволюция…………………...............
3. Источники энергии звезд………………………………………….. 8
4. Звездный нуклеосинтез……………………………………………. 12
4.1 Космологический нуклеосинтез…………………………………..12
4.2 Звезный нуклеосинтез…………………………………………….
5. Вывод……………………………………………………………….
6. Список использованной литературы……………………………… 22
Проблема происхождения атомов возникла при установлении природы источника энергии Солнца и звезд и при разработке теории Большого Взрыва Вселенной. Проблема источника энергии на Солнце была решена в конце 30-х годов XX века Х. Бете и К. Вейцзекером. На основе расчетов они пришли к выводу, что механизм генерации энергии на Солнце и в других звездах связан с образованием ядер гелия из четырех протонов: р-р-цикл и CNO-цикл. Однако расчеты показали, что в недрах звезд за время существования Вселенной может образоваться относительно мало гелия ( 2%) по сравнению с наблюдаемой его распространенностью ( 25%).
Спустя примерно десятилетие после публикации работ Х. Бете и К. Вейцзекера, Г.А. Гамовым была разработана теория Большого Взрыва Вселенной. Согласно этой теории, Вселенная прошла эру нуклеосинтеза в самый начальный момент, когда образовались протоны и нейтроны и вслед за ними изотопы водорода, гелия и лития. Предпринятая Г. Гамовым попытка развить космологическую идею образования всех атомов на раннем этапе расширения Вселенной (α, β, γ -теория) путем последовательного присоединения нейтронов и последующими βˉ -распадами не увенчалась успехом вследствие возникшей проблемы "провала масс" - отсутствия в природе ядер с массовыми числами 5 и 8: как было установлено, ядра 5 2He, 5 3Li и 8 4Be очень неустойчивые и быстро распадаются.
В тот же период Э. Салпетер показал, что при условиях, характерных для недр звезд, наряду с горением водорода (р-р- и CNO-циклы) возможно горение гелия с образованием углерода. Так возникли первые основные представления ядерного синтеза, большой вклад в развитие которых кроме названных выше ученых внесли У. Фаулер, Ф. Хойл, Дж. и М. Бербиджи, А. Камерон. Согласно современным научным представлениям, практически все химические элементы образовались и образуются в результате процессов, происходящих в звездах, что приводит к эволюционным изменениям состояния звезд. Поэтому проблема образования нуклидов тесно связана также и с вопросами эволюции звезд.
Окружающий нас мир состоит из различных химических элементов. Как образовались эти элементы в естественных условиях? В настоящее время общепризнанной является точка зрения, что элементы, из которых состоит Солнечная система, образовались в ходе звездной эволюции. С чего начинается образование звезды? Звезды конденсируются под действием гравитационных сил из гигантских газовых молекулярных облаков (термин “молекулярный” означает, что газ состоит в основном из вещества в молекулярной форме). Масса вещества, сосредоточенного в молекулярных облаках, составляет значительную часть всей массы галактик. Эти газовые облака первичного вещества состоят преимущественно из ядер водорода. Небольшую примесь составляют ядра гелия, образовавшиеся в результате первичного нуклеосинтеза в дозвездную эпоху.
Когда масса вещества звезды в результате аккреции достигает 0.1 массы Солнца, температура в центре звезды достигает 1 млн K и в жизни протозвезды начинается новый этап - реакции термоядерного синтеза. Однако эти термоядерные реакции существенно отличаются от реакций, протекающих в звездах, находящихся в стационарном состоянии, типа Солнца. Дело в том, что протекающие на Солнце реакции синтеза:
требуют более высокой температуры ~10 млн K. Температура же в центре протозвезды составляет всего 1 млн K. При такой температуре эффективно протекает реакция слияния дейтерия (d ≡ 2H):
2H +2H → 3He + n + Q, где Q = 3.26 МэВ - выделяющаяся энергия.
Дейтерий также как и 4He образуется на дозвездной стадии эволюции Вселенной и его содержание в веществе протозвезды составляет 10-5 от содержания протонов. Однако даже этого небольшого количества достаточно для появления в центре протозвезды эффективного источника энергии.
Непрозрачность протозвездного вещества приводит к тому, что в звезде начинают возникать конвективные потоки газа. Нагретые пузыри газа устремляются от центра звезды к периферии. А холодное вещество с поверхности спускается к центру протовезды и поставляет дополнительное количество дейтерия. На следующем этапе горения дейтерий начинает перемещаться к периферии протозвезды, разогревая её внешнюю оболочку, что приводит к разбуханию протозвезды. Протозвезда с массой, равной массе Солнца, имеет радиус, в пять раз превышающий солнечный.
Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода (рис.1).
Рис. 1. Основные этапы эволюции массивной звезды
(M>25M). M - масса Солнца
Когда температура в центре звезды повышается до 10-15 млн. K, кинетические энергии сталкивающихся ядер водорода оказываются достаточными для преодоления кулоновского отталкивания и начинаются ядерные реакции горения водорода. Ядерные реакции начинаются в ограниченной центральной части звезды. Начавшиеся термоядерные реакции сразу же останавливают дальнейшее сжатие звезды. Тепло, выделяющееся в процессе термоядерной реакции горения водорода, создает давление, которое противодействует гравитационному сжатию и не позволяет звезде коллапсировать. Происходит качественное изменение механизма выделения энергии в звезде. Если до начала ядерной реакции горения водорода нагревание звезды происходило за счет гравитационного сжатия, то теперь открывается другой механизм - энергия выделяется за счет ядерных реакций синтеза. Звезда приобретает стабильные размеры и светимость, которые для звезды с массой, близкой к солнечной, не меняются в течение миллиардов лет, пока происходит сгорание водорода. Это самая длительная стадия в звездной эволюции. Таким образом, начальный этап термоядерных реакций синтеза состоит в образовании ядер гелия из четырех ядер водорода. По мере того, как в центральной части звезды происходит горение водорода, его запасы там истощаются и происходит накопление гелия. В центре звезды формируется гелиевое ядро. Когда водород в центре звезды выгорел, энергия за счет термоядерной реакции горения водорода не выделяется и в действие вновь вступают силы гравитации. Гелиевое ядро начинает сжиматься. Сжимаясь, ядро звезды начинает нагреваться еще больше, температура в центре звезды продолжает расти. Кинетическая энергия сталкивающихся ядер гелия увеличивается и достигает величины, достаточной для преодоления сил кулоновского отталкивания.
Начинается следующий этап термоядерной реакции - горение гелия. В результате ядерных реакций горения гелия образуются ядра углерода. Затем начинаются реакции горения углерода, неона, кислорода. По мере горения элементов с большим Z температура и давление в центре звезды увеличиваются со все возрастающей скоростью, что в свою очередь увеличивает скорость ядерных реакций (рис.2).
Рис. 2. Эволюция массивной звезды
Если для массивной звезды (масса звезды ~ 25 масс Солнца) реакция горения водорода продолжается несколько миллионов лет, то горение гелия происходит в десять раз быстрее. Процесс горения кислорода длится около 6 месяцев, а горение кремния происходит за сутки. Какие элементы могут образоваться в звездах в последовательной цепочке термоядерных реакций синтеза? Ответ очевиден. Ядерные реакции синтеза более тяжелых элементов могут продолжаться до тех пор, пока возможно выделение энергии. На завершающем этапе термоядерных реакций в процессе горения кремния образуются ядра в районе железа. Это конечный этап звездного термоядерного синтеза, так как ядра в районе железа имеют максимальную удельную энергию связи. Ядерные реакции, происходящие в звездах в условиях термодинамического равновесия, существенно зависят от массы звезды. Происходит это потому, что масса звезды определяет величину гравитационных сил сжатия, что в конечном итоге определяет максимальную температуру, достижимую в центре звезды. В табл. 1 приведены результаты теоретического расчета возможных ядерных реакций синтеза для звезд различной массы.
Теоретический расчет возможных ядерных реакций в звездах различной массы
Масса, M | Возможные ядерные реакции |
0.08 | Нет |
0.3 | Горение водорода |
0.7 | Горение водорода и гелия |
5.0 | Горение водорода, гелия, углерода |
25.0 | Все реакции синтеза с выделением энергии |
Если начальная масса звезды превышает 10M, конечной стадией её эволюции является так называемый “взрыв сверхновой”. Когда в массивной звезде иссякают ядерные источники энергии, гравитационные силы продолжают сжимать центральную часть звезды. Давления вырожденного электронного газа недостаточно для противодействия силам сжатия. Сжатие приводит к повышению температуры. При этом температура поднимается настолько, что начинается расщепление ядер железа, из которого состоит центральная часть (ядро) звезды, на нейтроны, протоны и α -частицы. При таких высоких температурах ( T ~ 5·109 K) происходит эффективное превращение пары протон + электрон в пару нейтрон + нейтрино. Так как сечение взаимодействия низкоэнергичных нейтрино (Eν < 10МэВ) с веществом мало ( σ ~ 10-43 см2), то нейтрино быстро покидают центральную часть звезды, эффективно унося энергию и охлаждая ядро звезды. Распад ядер железа на более слабо связанные фрагменты также интенсивно охлаждает центральную область звезды. Следствием резкого уменьшения температуры в центральной части звезды является окончательная потеря устойчивости в звезде. За несколько секунд ядро звезды коллапсирует в сильно сжатое состояние нейтронную звезду или черную дыру. Происходит взрыв сверхновой с выделением огромной энергии. В результате образования ударной волны внешняя оболочка нагревается до температуры ~ 109 K и выбрасывается в окружающее пространство под действием давления излучения и потока нейтрино. Невидимая до этого глазом звезда мгновенно вспыхивает. Энергия, излучаемая сверхновой в видимом диапазоне, сравнима с излучением целой галактики.
В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез. В частности, образующиеся интенсивные потоки нейтронов приводят к появлению элементов в области массовых чисел
A > 60. Взрыв сверхновой довольно редкое событие. В нашей Галактике, насчитывающей ~ 1011 звезд, за последние 1000 лет было замечено всего 3 вспышки сверхновых. Однако частота вспышек сверхновых и количество вещества, выбрасываемого в межзвездное пространство, вполне достаточны для объяснения интенсивности космических лучей. После взрыва сверхновой уплотнившееся ядро звезды может образовать нейтронную звезду или черную дыру в зависимости от массы вещества, оставшегося в центральной части взорвавшейся сверхновой.
Таким образом, внутри звезды происходит переплавка водорода в более тяжелые элементы. Затем образовавшиеся элементы рассеиваются в окружающее пространство в результате взрыва сверхновых звезд или в менее катастрофических процессах, происходящих в красных гигантах. Выброшенное в межзвездное пространство вещество используется снова в процессе образования и эволюции звезд второго и последующих поколений. В процессе эволюции звезд населения I и населения II происходит образование все более тяжелых элементов.
Информация о работе Источники энергии звезд и вторичный нуклеосинтез в них