Дифференциация, интеграция и математизация в развитии науки

Автор: Пользователь скрыл имя, 10 Декабря 2010 в 00:03, контрольная работа

Краткое описание

Выявление логики развития науки означает уяснение закономерности научного прогресса, его движущих сил, причин и исторической обусловленности. Современное видение этой проблемы существенно отличается от того, которое господствовало, пожалуй, до середины нашего столетия. Прежде полагали, что в науке идет непрерывное приращение научного знания, постоянное накопление новых научных открытий и все более точных теорий, создающее в итоге кумулятивный эффект на разных направлениях познания природы. Ныне логика развития науки представляется иной: она развивается не только путем непрерывного накопления новых фактов и идей - шаг за шагом, но и через фундаментальные теоретические сдвиги. В один прекрасный момент они заставляют ученых перекраивать привычную общую картину мира и перестраивать свою деятельность на базе принципиально иных мировоззренческих установок. Логику неспешной эволюции науки (шаг за шагом) сменила логика научных революций и катастрофы. Ввиду новизны и сложности проблемы в методологии науки еще не сложилось общепризнанного подхода логики развития научного знания. Таких моделей множество. Но некоторые все приобрели приоритет.

Оглавление

Введение...................................................................................................................3

1. Процессы дифференциации в развитии науки……………………………….4

2. Процессы интеграции в развитии науки. Взаимосвязь дифференциации и интеграции………………………………………………………………………...7

3. Процессы математизации науки……………………………………………..10

Заключение…………………………………………………………………….....16

Список используемой литературы………………………………………….…..17

Файлы: 1 файл

ксе2.doc

— 84.50 Кб (Скачать)

   Прогресс  в научном познании часто связан с введением именно количественных понятий и созданием количественного языка, которые и исторически, и логически возникают на основе языка качественных описаний. Количественный язык выступает как дальнейшее развитие, уточнение и дополнение обычного, естественного языка, опирающегося на качественные понятия. Таким образом, количественные и качественные методы исследования не исключают, а скорее дополняют друг друга. Известно, что количественные понятия и язык использовались задолго до того, как возникло экспериментальное естествознание. Однако только после появления последнего они начинают применяться вполне сознательно и систематически. Язык количественных понятий наряду с экспериментальным методом исследования впервые успешно использовал Г. Галилей.

Преимущества  количественного языка математики в сравнении с естественным языком состоят в следующем:

  • такой язык весьма краток и точен. Например, чтобы выразить интенсивность какого-либо свойства с помощью обычного языка, нужно несколько десятков прилагательных. Когда же для сравнения или измерения используются числа, процедура упрощается. Построив шкалу для сравнения или выбрав единицу измерения, можно все отношения между величинами перевести на точный язык чисел. С помощью математического языка (формул, уравнений, функций и других понятий) можно гораздо точнее и короче выразить количественные зависимости между самыми разнообразными свойствами и отношениями, характеризующими процессы, которые исследуются в естествознании. С этой целью используются методы математики, начиная от дифференциального и интегрального исчисления и кончая современным функциональным анализом;
  • опираясь на крайне важные для познания законы науки, которые отображают существенные, повторяющиеся связи предметов и явлений, естествознание объясняет известные факты и предсказывает неизвестные. Здесь математический язык выполняет две функции: с помощью математического языка точно формулируются количественные закономерности, характеризующие исследуемые явления; точная формулировка законов и
  • научных теорий на языке математики дает возможность при получении из них следствий применить богатый математический и логический аппарат.

     Все это показывает, что в любом  процессе научного познания существует тесная взаимосвязь между языком качественных описаний и количественным математическим языком. Эта взаимосвязь конкретно проявляется в сочетании и взаимодействии естественно-научных и математических методов исследования. Чем лучше мы знаем качественные особенности явлений, тем успешнее можем использовать для их анализа количественные математические методы исследования, а чем более совершенные количественные методы применяются для изучения явлений, тем полнее познаются их качественные особенности.

Математика  в естествознании:

  • играет роль универсального языка, специально предназначенного для лаконичной точной записи различных утверждений. Конечно, все, что можно описать языком математики, поддается выражению на обычном языке, но тогда изъяснение может оказаться чересчур длинным и запутанным;
  • служит источником моделей, алгоритмических схем для отображения связей, отношений и процессов, составляющих предмет естествознания. С одной стороны, любая математическая схема или модель - это упрощающая идеализация исследуемого объекта или явления, а с другой - упрощение позволяет ясно и однозначно выявить суть объекта или явления.

     Поскольку в математических формулах и уравнениях отражены некие общие свойства реального  мира, они повторяются в разных его областях. На этом свойстве построен такой своеобразный метод естественно-научного познания, как математическая гипотеза, когда к готовым математическим формам пытаются подобрать конкретное содержание. Для этого в подходящее уравнение из смежных областей науки подставляют величины другой природы, а затем производят проверку на совпадение с характеристиками исследуемого объекта. Эвристические возможности этого метода достаточно велики. Так, с его помощью были описаны основные законы квантовой механики: Э. Шрёдингер, приняв волновую гипотезу движения элементарных частиц, нашел уравнение, которое формально не отличается от уравнения классической физики колебаний нагруженной струны, дал его членам совершенно иную интерпретацию (квантово-механическую). Это позволило Шрёдингеру получить волновой вариант квантовой механики.

Приложение  математики к разным отраслям естествознания

     Приложения  математики весьма разнообразны. По мнению акад. А.Н. Колмогорова, область применения математического метода принципиально  не ограничена. В то же время роль и значение математического метода в различных отраслях естествознания неодинаковы. Дело в том, что математические методы применимы для объектов и явлений, обладающих качественной однородностью и вследствие этого количественно и структурно сравнимых. Именно со сложностью выявления качественной однородности групп объектов и явлений связана трудность получения математических формул и уравнений для объектов естествознания. Чем более сложными и качественно различными являются природные объекты и явления, тем труднее их сравнивать количественно, т.е. тем труднее они поддаются математизации.

     Математический  метод полностью господствует в  небесной механике, в частности в  учении о движении планет. Имеющий  очень простое математическое выражение  закон всемирного тяготения почти  полностью определяет изучаемый  здесь круг явлений. Каждый результат, полученный на основе математического метода, с высокой точностью подтверждается в действительности.

     В физике тоже велика роль математического  метода. Почти не существует области  физики, не требующей употребления развитого математического аппарата. Основная трудность исследования заключается не в применении математической теории, а в выборе предпосылок для математической обработки и в истолковании результатов, полученных математическим путем.

     В химии для исследования закономерностей  также широко используются математические методы. Это возможно потому, что при всем различии свойств химических элементов всеони обладают и общей характеристикой - атомным весом. Сравнение элементов по этому признаку позволило Д.И. Менделееву построить Периодическую систему элементов. На выделении общих свойств химических веществ и соединений обычно и основывается применение математических методов в химии.

     В биологических науках и науках о  Земле математические методы часто  играют подчиненную роль вследствие множества специфических свойств изучаемых здесь систем. Это затрудняет поиски качественной однородности среди них и соответственно математизацию этих наук. Однако и здесь есть высокоматематизированные отрасли, опирающиеся на изучение физических основ природных явлений (геофизика, биофизика и т.д.).

     Таким образом, роль математизации в современном  естествознании очень велика, и нередко  новая теоретическая интерпретация  какого-либо явления в естествознании считается полноценной, если удается  создать математический аппарат, отражающий основные его закономерности. Однако не следует думать, что все естествознание в итоге будет сведено к математике. Построение различных формальных систем, моделей, алгоритмических схем - лишь одна из сторон развития научного знания, а естествознание развивается, прежде всего, как содержательное знание. Не удается формализовать сам процесс выдвижения, обоснования и опровержения гипотез, научную интуицию. Глубина объяснения и достоверность предсказания зависят в первую очередь от тех конкретных посылок, на которые они опираются, и математизация не может восполнить пробел в отсутствии такого рода посылок. Знаменитый естествоиспытатель Т. Гексли говорил, что математика, подобно жернову, перемалывает то, что под него засыпают, и, как, засыпав лебеду, вы не получите пшеничной муки, так, исписав целые страницы формулами, вы не получите истины из ложных предположений. А, по мнению известного математика Ю.А.Митропольского, применение математики к другим наукам имеет смысл только в единении с глубокой теорией конкретного явления, иначе можно сбиться на простую игру в форму, за которой нет реального содержания. 
 

     Заключение

     Таким образом, на основании рассмотренного материала, можно сделать выводы, что развитие научного знания неизбежно  сопровождается процессами дифференциации, для того, чтобы глубже проникнуть в суть происходящих явлений и детально изучить каждый объект и предмет науки. Но процесс дифференциации, как мы выяснили должен непременно сопровождаться интеграцией. В процессе интеграции происходит взаимопроникновение и объединение в единое целое самых различных направлений научного познания мира, взаимодействие разнообразных методов и идей, что, несомненно, упрощает развитие науки. В современной науке получает все большее распространение объединение наук для разрешения крупных задач и глобальных проблем, выдвигаемых практическими потребностями. Так, например, решение очень актуальной сегодня экологической проблемы невозможно без тесного взаимодействия естественных и гуманитарных наук, без синтеза вырабатываемых ими идей и методов.

     Безусловно, математика играет важную роль в развитии науки. Математика проникает в другие сферы деятельности людей и прочно там закрепляется. В настоящее  время мы видим бурный рост числа  математических приложений, связанный, прежде всего с развитием компьютерных технологий, появлением глобальной сети Internet. Те математические идеи, которые раньше не покидали области академической науки, сейчас являются привычными в обиходе программистов, прикладников, экономистов. 
 
 
 
 
 

Список  используемой литературы

  1. Лавриненко  В.Н., Ратникова В.П. «Концепции современного естествознания»: Учебник для вузов. - М.: ЮНИТИ-ДАНА, 2001. - 303
  2. Карпенков С.Х. «Концепции современного естествознания учебник для вузов». - Москва 2000г.
  3. Чепиков М.Г. «Интеграция науки» — М., 1981.
  4. Эйнштеин А. «Физика и реальность». - М., 1965 С.111
  5. Рузавин Г.И. «Концепции современного естествознания»: Учебник для вузов. — М.: Культура и спорт, ЮНИТИ, 1997;
  6. Карпенков С.Х. «Концепции современного естествознания»: Учебник для вузов. — М.: Культура и спорт, ЮНИТИ, 1997;
  7. Философия и методология науки. М., 1996.
  8. Петров Ю.А. Теория познания. М., 1988.
 

Информация о работе Дифференциация, интеграция и математизация в развитии науки