Модели портфельного управления, проблемы их применения в Российской Федерации

Автор: Пользователь скрыл имя, 01 Марта 2013 в 18:18, курсовая работа

Краткое описание

Целью данной работы является разработка статической экономико-математической модели оптимального портфеля ценных бумаг. Для достижения этой цели в данной работе были рассмотрены следующие задачи:
понятие инвестиционного портфеля
портфель ценных бумаг, его доходность и риск
модели портфельного управления
выбор оптимального портфеля ценных бумаг.

Файлы: 1 файл

3.1.doc

— 546.00 Кб (Скачать)

Это положение легко  объясняется на примере портфеля, состоящего из двух акций. Если акции ведут себя совершенно одинаково, то в этом случае комбинация ценных бумаг в портфеле не снижает риска портфеля. В то же время если две ценные бумаги имеют абсолютно негативную корреляцию (Сог=-1), то риск портфеля может быть полностью исключен.

Для практического использования  модели Марковица необходимо определить для каждой акции ожидаемую доходность, ее стандартное отклонение и ковариацию между акциями. Если имеется эта информация, то, как показал Марковиц, с помощью квадратичного программирования можно определить набор «эффективных портфелей», что иллюстрируется с помощью графика на рис. 5. R (%)


 

                                                          F


                                       C


                      B

                                           A


 

               F


                                     (рис.1).                   s(%

Рис. 1. Кривая эффективных портфелей

Согласно  трактовке Марковица, если имеется некий портфель А, то он является субоптимальным или неэффективным, так как портфель В мог бы обеспечить тот же самый уровень ожидаемой доходности с меньшей степенью риска, в то время как портфель С при той же степени риска мог бы обеспечить более высокую ожидаемую доходность. Таким образом, все эффективные портфели должны лежать на кривой EF, которая часто называется «эффективной границей» Марковица.

Портфели, которые лежат  в средней части кривой, обычно содержат много ценных бумаг, в то время как ближе к краям всего несколько. Точка F ассоциируется с тем, что все инвестиции вложены в акции одного вида, с максимальной ожидаемой доходностью. А точка Е соответствует тому положению, когда сочетание нескольких акции в портфеле обеспечивает наименьшую степени риска портфеля.

Итак, модель Марковица не дает возможности выбрать оптимальный портфель, а определяет набор эффективных портфелей. Каждый из этих портфелей обеспечивает наибольшую ожидаемую доходность для определенного уровня риска.

Различные инвесторы и портфельные менеджеры будут выбирав различные решения в достижении состава портфеля в зависимости от их отношения к риску, например, так называемые «консервативные» инвесторы (т.е. те, кто заинтересован в сохранении своих капиталов и получении постоянной и предсказуемой прибыли) будут отдавать  предпочтение  портфелям,  лежащим  в  более  левой  нижней части  кривой  эффективной  границы  Марковица.   Более  «агрессивные» инвесторы (те, кто идет на более высокий риск в надежде получить более высокую, но менее определенную ожидаемую отдачу) будут формировать свои портфели, находящиеся ближе к точке F на кривой.

Разумеется, следует иметь в виду, что сформированный однажд эффективный портфель не остается таковым в течение длительного  времени, так как курсы акций подвержены постоянным изменениям и, следовательно, эти эффективные портфели приходится постоянно пересматривать. Однако это обстоятельство в условиях высокой компьютеризации расчетов не является сегодня значимой проблемой.

Модель  Марковица явилась предметом  критики как со стороны теоретиков, так и практиков. Первое возражение относится к предположению Марковица о том, что рациональные инвесторы отвергают риск.

Второй  вопрос состоит в том, является ли стандартное отклонение наиболее подходящей мерой  степени риска? Дело  в  том,  что Марковиц и его последователи использовали колебания цен акций, имевшие место в прошлые периоды, для оценки будущего изменения цен акций. Но будущее может не повторять прошлое развитие. Кроме того, если инвестор приобретает акции с целью длительного владения ими, и при этом не возникает потребности в высокой ликвидности акций, то колебание цены акций в этом случае не является реальным  риском.   Вопрос  объясняется   в  данном   случае  уровнем окончательной цены, и здесь риск таких акций скорее может быть объяснен, например, риском банкротства предприятия.

Кроме того, были и остаются некоторые чисто практические обстоятельства, ограничивающие использование модели Марковица. Они заключается в том, что специалисты-практики трудно воспринимают математические выкладки. Другое ограничение заключается в том, что для того чтобы сохранить желаемый баланс сочетания «риск-доходность» портфеля, нужно постоянно переоценивать все множество ценных бумаг, а это требует большого числа информации и математических вычислений. Сам Марковиц подчеркивал, что анализ 100 ценных бумаг требует вычисления 100 ожидаемых значений доходности, 100 дисперсий и почти 5000 ковариаций.

Конечно, использование современной вычислительной техники значительно облегчает использование модели Марковица на практике, и это как бы снимает препятствия для применения модели. Поэтому значительно большим недостатком является тот факт, что модель Марковица предлагает набор эффективных портфелей. Эти наборы могут быть такими многочисленными, что менеджерам пришлось бы какие-то акции покупать, какие-то продавать, что привело бы к большим издержкам. Даже если это осуществлять раз в квартал, все равно затраты будут значительными.

И все  же несмотря на все недостатки модели Марковица его вклад в современную теорию портфеля является огромным. Этот вклад не следует рассматривать как пакет каких-то рекомендаций для повседневного руководства. Основное значение работы состоит в том, что она сфокусировала внимание на ожидаемой доходности и полном риске портфеля в зависимости от состава входящих в портфель акций и стимулировала целую серию исследований в этом направлении. Кроме того, работа Марковица поставила вопрос о том, как высокоскоростные ЭВМ могут быть использованы в принятии инвестиционных решений, что привело к тому, что появился смысл в создании широкой базы данных по ценным бумагам. Так, первая компьютерная программа для реализации модели Марковица была разработана корпораций IBM еще в 1962 г. В дальнейшем были сделаны усовершенствованные программы, которые дали возможность менеджерам и инвесторам использовать их для практических целей.

 

 

2.2.  Использование безрисковых  займов и кредитов

Подход  Марковица предполагает, что все  инвестиции вложены в рисковые активы. Теперь предположим, что инвестору разрешается вкладывать средства в безрисковые активы, т. е. если имеется N активов, то (N— 1) — это количество рисковых активов и один безрисковый. Допустим также, что инвестор может привлекать займы по безрисковой ставке и использовать их для вложения в рисковые активы.

Под безрисковым активом понимаются актив, по которому доход является строго определенным. По определению, стандартное отклонение по безрисковому активу равно нулю. Следовательно, ковариация между доходностями безрискового актива и любого рискового актива равна нулю. В качестве безрискового актива должен выступать актив, имеющий фиксированный доход и нулевую вероятность неуплаты.  К таким активам могут быть отнесены государственные краткосрочные облигации, срок погашения которых совпадает с периодом владения. Покупка безрискового актива представляет собой безрисковое кредитование, так как при этом инвестор предоставляет деньги взаймы.

Предположим, что инвестор выбирает портфель, составленный из рисковых   активов,   и   намеревается   комбинировать   этот   портфель с вложением части средств в безрисковый актив. Положение портфеля соответствует точке D, лежащей на эффективной границе Марковица (рис. 2)

 

 

 

 

 

 

 

Рис. 2. Графики портфелей, сочетающих рисковые и безрисковые активы

Портфель, формируемый включением безрискового актива в рисковый портфель, должен лежать на прямой, которая соединяет точку соответствующего безрискового актива (Rf) с точкой, характеризующей портфель, составленной из определенного сочетания ценных бумаг (D). Эта прямая представляет собой комбинации портфелей, состоящих из различных долей безрискового и рискового активов.

Как было показано ранее, эффективные портфели из модели Марковица должны лежать на кривой EF. Теперь мы приходим к выводу, что в случае сочетания портфеля с безрисковым активом портфели должны располагаться на линии, соединяющей точку безрискового актива с рисковым портфелем.

Однако таких  линий может быть проведено множество, и одна из них — это линия RfD. Какая же линия является более привлекательной? Портфели, лежащие на линии RfD, не являются эффективными, так как любому портфелю, лежащему на этой линии, например P1, может быть противопоставлен портфель P2 с более высокой доходностью при той же степени риска, либо портфель Р3 с той же доходностью, но меньшей степенью риска. Следовательно, эффективные портфели будут лежать на линии, которая имеет наибольший угол наклона по отношению к горизонтальной оси. Эта линия выходит из точки Rf и является касательной по отношению к кривой, соответствующей эффективному множеству границы Марковица. Сама точка касания будет соответствовать портфелю, который составлен только из акций. Все портфели, лежащие выше и правее точки Т, также будут составлены только из рисковых активов. Чем больше инвестор стремится избегать риска, тем ближе точки, соответствующие выбранному портфелю, будут находиться к точке Rf. Если же инвестор стремится полностью избежать риска, то его портфель должен быть оставлен полностью из безрисковых активов.

Предположим теперь, что инвестор может увеличить  свой капитал для вложения в данные бумаги за счет безрисковых займов. В частности, можно предположить, что эти займы привлекаются за счет кредита брокера. Для целей настоящего анализа предполагается, что процентная ставка по привлечению кредитных средств равна процентной ставке по безрисковым вложениям. Например, если у инвестора было 10 000 долл., и он взял взаймы 2000 долл., то это значит, что он может вложить в рисковые активы 12 000 долл. Если доля в рисковые активы составляет WR и безрисковый заем WF, то:

WR  + WF =l,2 + (-0,2) = l.

Нетрудно  доказать, что портфели, состоящие из безрисковых займов и рисковых активов, будут лежать на продолжении прямой линии RfT, как и портфели, которые включали безрисковое кредитование. При этом чем больше сумма привлеченных средств, тем выше и правее располагается точка портфеля. Точное расположение каждой точки зависит от величины займа. Какое бы количество средств мы ни привлекали, если эти средства вместе с собственным капиталом помещаются в рисковый портфель, то он будет лежать на прямой RfT. Эта прямая будет представлять собой не что иное, как эффективное множество, т. е. портфели, предлагающие наилучшие возможности,  будут  располагаться  именно  на  этой  прямой,   так  как каждый из них лежит левее и выше остальных. Портфелей, лежащих влево  от  прямой,  не  существует,   а любому  портфелю,  лежащему вправо от прямой, например портфелю М1, может быть противопоставлен портфель М3, который имеет такую же доходность, но меньшее стандартное отклонение, или портфель М2, обеспечивающий более высокую доходность при том же стандартном отклонении. Таким образом, если мы вводим условие, что инвестор имеет возможность предоставлять или получать безрисковые займы, то при этом условии ни один из портфелей, кроме портфеля Т, не являются эффективным. Эффективным портфелем в эффективном множестве модели Марковица является единственный портфель Т, который находится в точке касания прямой и эффективной границы модели Марковица.

 Любая   другая   структура   портфеля   с   использованием   займом и кредитов не будет являться эффективной, так как любой из этих портфелей будет лежать правее линии RfT, а это означает, что всегда найдется портфель, который лежит на прямой.

 

 

2.3. Модель Шарпа

Как было отмечено выше, модель Марковица  не дает возможности выбрать оптимальный портфель, а определяет набор эффективных портфелей. Каждый из этих портфелей обеспечивает наибольшую ожидаемую доходность для определения уровня риска. Однако главным недостатком модели Марковица является то, что она требует очень большого количества информации. Гораздо меньшее количество информации используется в модели У. Шарпа. Последнюю можно считать упрощенной версией модели Марковица. Если модель Марковица можно назвать мультииндексной моделью, то модель Шарпа называют диагональной моделью или моделью единичного индекса.

Согласно  Шарпу, прибыль на каждую отдельную  акцию строго коррелирует с общим рыночным индексом, что значительно упрощает процедуру нахождения эффективного портфеля. Применение модели Шарпа требует значительно меньшего количества вычислений, поэтому она оказалась более пригодной для практического использования.

Анализируя  поведение акций на рынке, Шарп пришел к выводу, что вовсе не обязательно определять ковариацию каждой акции друг с другом. Вполне достаточно установить, как каждая акция взаимодействует со всем рынком. И поскольку речь идет о ценных бумагах то, следовательно, нужно взять в расчет весь объем рынка ценных бумаг. Однако нужно иметь в виду, что количество ценных бумаг и прежде всего акций в любой стране достаточно велико. С ними осуществляется ежедневно громадное количество сделок как на биржевом, так и внебиржевом рынке. Цены на акции постоянно изменяются, поэтому определить какие-либо показатели по всему объем рынка оказывается практически невозможным. В то же время установлено, что если мы выберем некоторое количество определенных ценных  бумаг,  то  они  смогут  достаточно  точно  охарактеризовать движение всего рынка ценных бумаг. В качестве такого рыночного показателя можно использовать фондовые индексы.

Рассматривая  выше взаимосвязь поведения акций друг с другом, мы установили, что достаточно трудно или почти невозможно найти такие акции, доходность которых имеет отрицательную корреляцию. Большинство акций имеют тенденцию расти в цене, когда происходит рост  экономики,  и  снижаться  в  цене,  когда происходит  спад в экономике.

Разумеется, можно найти несколько акций, которые выросли и цене из-за особого стечения обстоятельств, в то время когда другие акции падали в цене. Труднее найти такие акции и дать логическое объяснение тому, что эти акции будут повышаться в цене в будущем, в то время как другие акции будут снижаться в цене. Таким образом, даже портфель, состоящий из очень большого количества акций, будет иметь высокую степень риска, хотя риск будет значительно меньше, чем если бы все средства были вложены в акции одной компании.

Для того, чтобы уяснить  более точно, какое влияние структура  портфеля оказывает на риск портфеля, обратимся к графику на рис. 7, который показывает, как снижается риск портфеля, если число акций в портфеле увеличивается. Стандартное отклонение для «среднего портфеля», составленного из одной акции, котируемой на Нью-Йоркской фондовой бирже, составляет приблизительно 28%. Средний портфель, составленный из двух случайно выбранных акций, будет иметь меньшее стандартное отклонение — около 25%. Если число акций в портфеле довести до 10, то риск такого портфеля снижается примерно до 18%. График показывает, что риск портфеля имеет тенденцию к снижению и приближается к некоторому пределу по мере того, как величина портфеля увеличивается. Портфель, состоящий из всех акций, который принято называть рыночным портфелем, должен был бы иметь стандартное отклонение около 15,1%. Таким образом, почти половина риска, присущего средней от

Информация о работе Модели портфельного управления, проблемы их применения в Российской Федерации