Автор: Пользователь скрыл имя, 17 Октября 2011 в 21:14, реферат
В широком смысле информа́тика (ср. со сходными по звучанию и происхождению нем. Informatik и фр. Informatique, в противоположность традиционному англоязычному термину англ. computer science — наука о компьютерах - в США или англ. computing science — вычислительная наука -в Британии есть наука о вычислениях, хранении и обработке информации. Она включает дисциплины, так или иначе относящиеся к вычислительным машинам: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования
Введение 3
1 Теория графов 5
1.1 Понятие и терминология теории графов 5
1.2 Некоторые задачи теории графов 6
2 Математическая логика и теория типов 25
Заключение 27
Список использованной литературы 30
M(a1) + M(a2) + ... + M(an) ³ 6n = 6V(G ),
что противоречит (2).
Перенумеруем вершины так, что в вершине a = an сходится не более пяти ребер.
Если в вершине a сходятся не более четырех ребер, то рассмотрим граф G \ a, который получается из G устранением вершины a и всех оканчивающихся в ней ребер. Граф G \ a допускает правильную 5-раскраску по предположению индукции. А так как ребра соединяют вершину a не более чем с четырьмя вершинами этого меньшего графа, то для правильной раскраски a остается по крайней мере один цвет (из пяти).
Пусть теперь в a сходится ровно пять ребер. Рассмотрим граф H É G, состоящий из тех пяти вершин, куда приходят ребра, выходящие из a и соединяющих их (в G) ребер. В графе H обязательно найдутся две вершины, не соединенные ребром. Действительно в противном случае в пятиугольнике H будет C52= 10 ребер (это нетрудно посчитать и непосредственно). Однако в силу (1)
| R(H ) | £ 3| V(H ) | – 6 = 3 " 5 – 6 = 9,
и мы приходим к противоречию.
Пусть b и g суть те вершины H, которые не соединены между собой. Не соединены они и в G \ a. Рассмотрим граф G ', который получается из G \ a при помощи деформации, которая отождествляет (совмещает) b и g. Граф G ' – это плоский граф, так как при отождествлении вершин в этой ситуации не может возникнуть петли. Но для G ' справедливо предположение индукции, и существует некоторая его правильная 5-раскраска j. Разъединим в этом раскрашенном графе вершины b и g. Тогда правильную 5-раскраску получает и граф G \ a, причем такую, что j(b) = j(g). Иными словами, b и g раскрашены одинаково и, следовательно, раскраска пяти соседних с a вершин графа H использует не более четырех цветов.
Используем оставшийся цвет для раскраски вершины a и получим правильную 5-раскраску G!
Проблема четырех красок кажется на первый взгляд изолированной задачей, мало связанной с другими разделами математики и практическими задачами. На самом деле это не так. Известно более 20 ее переформулировок, которые связывают эту проблему с задачами алгебры, статистической механики и задачами планирования. И это тоже характерно для математики: решение задачи, изучаемой из чистого любопытства, оказывается полезным в описании реальных и совершенно различных по своей природе объектов и процессов. Здесь мы рассмотрим одну задачу, эквивалентную проблеме четырех красок.
Пусть
i, j и k суть стандартные единичные
направляющие векторы координатных
осей x, y и z соответственно. В трехмерном
пространстве определено векторное
произведение векторов, обозначаемое
знаком i. Если u, u k R3 – два вектора,
то их векторное произведение u i u имеет
длину а направление
Теорема 3. Для каждой пары ассоциаций, связанных с выражением u1 i u2 i ... i un , существует такая подстановка {u1 , u2 , ..., un} {i, j, k} (то есть {i, j, k} подставляются каким-то образом вместо всех uk), что значения ассоциаций будут равны между собой и отличны от нуля.
Утверждение
касается только векторов в трехмерном
пространстве и кажется простым,
но доказать его так же трудно, как
и теорему о 4-раскраске. Доказательство
эквивалентности последней
Во-первых, причем здесь графы? Графически ассоциацию можно представлять себе в виде дерева, то есть графа специального вида, устроенного следующим образом. Произведению всякой пары u i u соответствует пара ребер (веток), имеющих общую вершину, при этом концы ветвей соответствуют сомножителям, а общее начало – произведению. Шаг за шагом выполняя действия, предписанные в ассоциации скобками, приходим к корню этого дерева, соответствующему результату выполнения всех перемножений в заданной ассоциации. В верхней части рис. 2 представлены деревья, определяемые ассоциациями (u1 i u2) i (u3 i u4) (внизу, ветвями вверх) и (((u1 i u2) i u3) i u4) (вверху, ветвями вниз).
Склеим теперь оба эти дерева по концам веток (концы соответствуют всем элементам ассоциации u1 , u2 , u3 , u4) и затем соединим корни обоих деревьев дополнительным ребром. Получится плоский граф, изображенный в нижней части рис. 6. Отметим два специфических свойства такого графа: в любой его вершине сходится ровно три ребра (это свойство называется кубичностью графа). Удаление любого ребра не приводит к разделению графа на две не связанные между собой компоненты (это свойство назовем отсутствием разделяющего ребра).
Рис. 6. Плоский
граф
Эта конструкция обобщается для любой пары ассоциаций с одинаковым количеством сомножителей.
Во-вторых, причем здесь раскраски? Будем считать векторы i, j и k тремя красками, приписанными всем элементам ассоциации или, что то же, концевым веткам деревьев. Остальные ветки вплоть до корня окрасятся по правилам вычисления векторного произведения. Если мы хотим после вычислений получить ненулевой результат, то, как легко проверить, три ребра, сходящиеся в любой вершине, должны быть раскрашены по-разному.
Тем самым кубический плоский граф, полученный склеиванием двух деревьев различных ассоциаций, получит такую раскраску ребер, что в любой вершине сходятся три по-разному окрашенных ребра. Это так называемая правильная 3-раскраска ребер.
В-третьих, причем здесь проблема четырех красок? Дело в том, что проблемы правильной 4-раскраски вершин и правильной 3-раcкраски ребер эквивалентны. Точнее, справедлива
Теорема 4. Всякий кубический граф без разделяющих ребер допускает правильную 3-раскраску ребер.
Эта
теорема эквивалентна теореме 1 о
правильной 4-раскраске карт. Доказательство
эквивалентности не очень сложно,
и его можно найти в
Объясним
лишь, как 4-раскраска областей кубического
графа порождает 3-раскраску его
ребер. Пусть области кубического
графа окрашены четырьмя красками.
Вместо того чтобы нумеровать краски
числами 1, 2, 3 и 4, занумеруем их парами
(0, 0), (0, 1), (1, 0) и (1, 1). При отсутствии разделяющих
ребер к каждому ребру
Доказательство Аппеля и Хакена, в целом хотя и принятое математическим сообществом, вызывает до сих пор определенный скептицизм. Для читателя, поверхностно знакомого с математикой, предыдущая фраза должна вызвать изумление: а как же обязательный для математики принцип исключенного третьего, в соответствии с которым утверждение либо справедливо, либо нет? Дело обстоит не так просто. Вот что пишут сами авторы доказательства: "Читатель должен разобраться в 50 страницах текста и диаграмм, 85 страницах с почти 2500 дополнительными диаграммами, 400 страницами микрофишей, содержащими еще диаграммы, а также тысячи отдельных проверок утверждений, сделанных в 24 леммах основного текста. Вдобавок читатель узнает, что проверка некоторых фактов потребовала 1200 часов компьютерного времени, а при проверке вручную потребовалось бы гораздо больше. Статьи устрашающи по стилю и длине, и немногие математики прочли их сколько-нибудь подробно".
Говоря прямо, компьютерную часть доказательства невозможно проверить вручную, а традиционная часть доказательства длинна и сложна настолько, что ее никто целиком и не проверял. Между тем доказательство, не поддающееся проверке, есть нонсенс. Согласиться с подобным доказательством означает примерно то же, что просто поверить авторам. Но и здесь все сложнее.
Вернемся
сначала к доказательствам
Долгое
время идеалом математической строгости
были формулировки и доказательства
Евклида, в которых осуществлялась
программа вывода теорем из аксиом
по определенным правилам (метод дедукции,
позволяющий получать неочевидные
утверждения из очевидных посредством
ряда явно предъявляемых элементарных,
очевидно законных, умозаключений). Этот
образец строгости и в наше
время недостижим в курсе школьной
математики, но для современной чистой
математики стандарты Евклида
Трудно даже вообразить длину полного вывода теоремы о пяти красках в соответствии с современными стандартами математической логики и системы аксиом геометрии. Но совершенно точно, что такое рассуждение никто никогда не проделывал из-за бесполезности этого занятия: формальные выводы практически не поддаются проверке в силу свойств человеческой психики: помимо их гораздо большей (по сравнению с привычными рассуждениями) длины их сознательное усвоение идет гораздо медленнее. Поэтому обычно удовлетворяются уверенностью в том, что формальный вывод возможен в принципе.
В формуле Эйлера, например, математики не сомневаются. Вообще принятие доказательства есть некий социальный акт. Выдающийся алгебраист Ю.И. Манин в своей книге "Доказуемое и недоказуемое"5 пишет по этому поводу: "...отсутствие ошибок в математической работе (если они не обнаружены), как и в других естественных науках, часто устанавливается по косвенным данным: имеют значение соответствие с общими ожиданиями, использование аналогичных аргументов в других работах, разглядывание "под микроскопом" отдельных участков доказательства, даже репутация автора, словом, воспроизводимость в широком смысле. "Непонятные" доказательства могут сыграть очень полезную роль, стимулируя поиски более доступных рассуждений."
Именно
такая история происходит и с
доказательством теоремы о
Из
которых математика, стало быть,
исключена напрасно.
Математическая логика — раздел математики, изучающий доказательства. Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу»7.
Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.
Информация о работе Теория графов. Математическая логика и теория типов