Представление в компьютере графической информации и стандартные средства работы с ней в системах MS Windows

Автор: Пользователь скрыл имя, 02 Марта 2015 в 20:18, реферат

Краткое описание

Технологии компьютерной графики опираются на нисколько не менее абстрактные концепции и потому ничуть не проще для освоения, чем только что рассмотренные технологии текстовой разметки. Даже профессионалам в этой области полезно иногда отступить на шаг назад, чтобы окинуть обобщающим взглядом пеструю мешанину форматов, программ и стандартов.

Файлы: 1 файл

Представление в компьютере графической информации и стандартные средства работы с ней в системах MS Windows.docx

— 50.09 Кб (Скачать)

Представление в компьютере графической информации и стандартные средства работы с ней в системах MS Windows.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Технологии компьютерной графики опираются на нисколько не менее абстрактные концепции и потому ничуть не проще для освоения, чем только что рассмотренные технологии текстовой разметки. Даже профессионалам в этой области полезно иногда отступить на шаг назад, чтобы окинуть обобщающим взглядом пеструю мешанину форматов, программ и стандартов.

Если верно, что компьютер - инструмент для реализации абстракций, то для успешной работы с ним человек должен сам легко овладевать абстракциями и уметь приводить к ним явления реального мира. С таким целостным и гармоничным (в смысле пушкинской «гармонии», которую нельзя «поверить алгеброй») явлением, как графика, это может показаться еще более трудным, чем со всегда несколько суховатым и склонным к формализму (будь то формализм грамматики или же формализм компьютерного языка разметки) текстом. Однако и награда за соединение несоединимого велика: если текст в компьютере всегда останется текстом, то в работе с изображениями компьютер даст вам такую творческую свободу и откроет перед вами такие возможности, которые в докомпьютерную эпоху трудно было даже вообразить.

Визуализация - это, естественная, исходная база развития человека, начиная с раннего детства. Поэтому, пространственное воображение является фундаментальной компонентой профессиональной деятельности не только в технике, архитектуре, но и в науке, бизнесе и банковском деле.

Увеличивается роль компьютерной геометрической и графической подготовки в образовательной сфере, расширяется предметная область иллюстративной и деловой графики с учетом общей тенденции к визуализации любой информации.

С другой стороны конкуренция охватывает все виды человеческой деятельности, как профессиональную, так и сферу бизнеса. На передний план выступает увеличение заметности передаваемой информации. Визуальный канал занимает особое место в коммуникационной системе.

Компьютерная графика представляет собой одну из современных технологий создания различных изображений с помощью аппаратных и программных средств компьютера, отображения их на экране монитора и затем сохранения в файле или печати на принтере.

Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.

1. Общие сведения о графической информации

1.1 Растровая графика

графика растровый векторный программа

Если рассматривать фотографию на мониторе компьютера, то при большом увеличении, можно увидеть, что она состоит из множества точек квадратной формы. Если рассматривать такой рисунок на расстоянии, то точки сливаются в единое целое изображение. Это классический пример растровой графики. Такая графика состоит из множества точек - пикселов. Для кодирования каждого пиксела растрового изображения отводится определенное количество битов, поэтому изображение может содержать только ограниченное количество цветов, называемое цветностью. Чем больше выделяется битов на кодирование одного пиксела, тем большее количество цветов может быть использовано в изображении.

Растровое изображение - изображение, представляющее собой сетку пикселей или цветных точек (обычно прямоугольную) на компьютерном мониторе, бумаге и других отображающих устройствах и материалах (растр).

Изображение с самым большим количеством битов на одном пикселе называется TrueColor. Такую цветность называют фотореалистичной или полноцветной. Значение цвета пиксела представляет собой три числа, обозначающие доли красной, зеленой и синей составляющих соответственно. Причем каждое число занимает восемь битов или один байт. Такой способ задания цвета называется RGB (от английского Red, Green, Blue - красный, зеленый, синий).

Если изображение содержит меньшее количество цветов, то сначала создается палитра - особая таблица, в которую записаны все цвета, используемые в изображении, в формате RGB. Значение цвета каждого пиксела номер (индекс), указывающий на нужный цвет в палитре. Такие цвета называются индексированными, а сама графика - графикой с палитрой.

Мы часто наблюдаем полупрозрачные изображения, сквозь которые «просвечивает», то что находится под ними. В этом случае со значением цвета каждого пиксела нужно хранить и степень его прозрачности. Для этого используются два способа.

В случае полноцветной графики степень прозрачности пиксела задается с помощью дополнительных восьми битов или одного байта, добавляемых к уже имеющимся 24. Эти восемь битов называются каналом прозрачности или альфа-каналом, сама цветность - TrueColor с каналом прозрачности или просто 32-битовой. Полноцветная графика позволяет задать прозрачность отдельно для каждого пиксела. Графика с палитрой этого не допускает. Здесь используется другой способ задания прозрачности: один из цветов палитры объявляется прозрачным. Обычно это цвет левого верхнего пиксела изображения.

Важными характеристиками изображения являются:

· количество пикселей - может указываться отдельно количество пикселей по ширине и высоте (1024Ч768, 640Ч480 и т.п.) или же общее количество пикселей;

· количество используемых цветов или глубина цвета (эти характеристики имеют следующую зависимость: , где - количество цветов, - глубина цвета);

· цветовое пространство (цветовая модель) - RGB, CMYK, XYZ, YCbCr и др.;

· разрешение - справочная величина, говорящая о рекомендуемом размере изображения.

Форматы изображений:

Растровые изображения обычно хранятся в сжатом виде. В зависимости от типа сжатия может быть возможно или невозможно восстановить изображение в точности таким, каким оно было до сжатия (сжатие без потерь или сжатие с потерями соответственно). Так же в графическом файле может храниться дополнительная информация: об авторе файла, фотокамере и её настройках, количестве точек на дюйм при печати и др.

Сжатие без потерь

Использует алгоритмы сжатия, основанные на уменьшении избыточности информации.

· BMP или Windows Bitmap - обычно используется без сжатия, хотя возможно использование алгоритма RLE.

· GIF (Graphics Interchange Format) - устаревающий формат, поддерживающий не более 256 цветов одновременно. Всё ещё популярен из?за поддержки анимации, которая отсутствует в чистом PNG, хотя ПО начинает поддерживать APNG.

· PCX - устаревший формат, позволявший хорошо сжимать простые рисованые изображения (при сжатии группы подряд идущих пикселов одинакового цвета заменяются на запись о количестве таких пикселов и их цвете).

· PNG (Portable Network Graphics, переносная сетевая графика) разработан сообществом независимых программистов в качестве замены устаревающего и грозящего перейти в разряд коммерческих продуктов формата GIF. Он поддерживается в настоящее время многими графическими пакетами, но большой популярности пока не снискал. Графика хранится в файлах с расширением png. Она может быть любой цветности. Для сжатия графики используется очень мощный алгоритм Deflate (усыхание), обеспечивающий более сильное сжатие по сравнению с LZW. Графика может быть сохранена с чередованием не только строк, но и столбцов. Таким образом изображение будет проявляться и по строкам, и по столбцам. Поддерживается 256 степеней прозрачности и автоматическая коррекция яркости.

Достоинства растровой графики:

1. Простота вывода. Отображение  растровой графики не «нагружает»  слишком сильно процессор компьютера, вывод изображения происходит  очень быстро. Какая-либо дополнительная  обработка при этом отсутствует, за исключение подстройки цветов.

2. Размер массива пикселов, а значит и графического растрового файла, зависит от геометрических размеров самого изображения и от его цветности. Размер растрового изображения не зависит от его сложности. Это значит, что маленькие черно-белые изображения занимают меньше места, чем большие полноцветные.

3. Высокая точность и достоверность  передачи полутоновых изображений, например, сканированных картин  и фотографий.

Недостатки растровой графики:

1. Размер массива пикселов зависит от геометрических размеров самого изображения и от его цветности. Если сохранить в растровом формате простое, полноцветное и большое по размерам изображение, оно может занять на диске десятки мегабайт.

2. Растровая графика зависит  от разрешения устройства вывода: монитора или принтера.

3. Качество растровых изображений  ухудшается при сильном масштабировании.

1.2 Векторная графика

Если разбить даже очень сложное графическое изображение на простые элементы: прямые и кривые линии, эллипсы, прямоугольники и т.д., то эти простейшие элементы можно назвать примитивами. Описываются они с помощью определенных формул. В результате мы получим набор параметров для этих формул, используя которые, можно воссоздать исходный набор примитивов, а значит и исходное изображение. Графика состоящая из примитивов называется векторной графикой.

Для вывода на экран компьютер растрирует векторную графику, для чего дополнительно тратит системные ресурсы. Затраты системных ресурсов на растрирование - один из главных недостатков векторной графики, но неоспоримые достоинства с лихвой его окупают.

Если в растровой графике базовым элементом изображения является точка, то в векторной графике-линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия - элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом.

Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами.

Все прочие объекты векторной графики составляются из линий. Например куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра.

Для создания изображения векторного формата, отображаемого на растровом устройстве, используются преобразователи, программные или аппаратные (встроенные в видеокарту).

Термин «векторная графика» используется в основном в контексте двумерной компьютерной графики.

Способ хранения изображения

Рассмотрим, к примеру, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:

· координаты центра окружности;

· значение радиуса r;

· цвет заполнения (если окружность не прозрачная).

Достоинства векторной графики:

· Независимость размера файла векторного изображения. В этом случае файл записывается не в огромный массив цветовых значений для всех пикселов, составляющих изображение, а только в типы и параметры всех задействованных в нем примитивов, занимающих сравнительно небольшой объем.

· Прекрасная масштабируемость.

· Как следствие масштабируемости - независимость от разрешения устройства вывода монитора или принтера.

· Исключительные возможности по обработке изображений. Векторные изображения можно поворачивать, искажать, отображать зеркально, перекрашивать, делать полупрозрачными и т.д. Аналогичные манипуляции с растровыми изображениями потребуют много системных ресурсов.

Преимущества векторного способа описания графики над растровой графикой:

· Размер позволяет, используя минимальное количество информации, описать сколько угодно большой объект файлом минимального размера.

· В связи с тем, что информация об объекте хранится в описательной форме, можно бесконечно увеличить графический примитив, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

· Параметры объектов хранятся и могут быть легко изменены. Также это означает что перемещение, масштабирование, вращение, заполнение и т.д. не ухудшает качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах (англ. device-independent unit), которые ведут к наилучшей возможной растеризации на растровых устройствах.

· При увеличении или уменьшении объектов толщина линий может быть задана постоянной величиной, независимо от реального контура.

Типичные примитивные объекты

· Линии и ломаные линии.

· Многоугольники.

· Окружности и эллипсы.

· Кривые Безье.

· Безигоны.

· Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

1.3 Демонстрационная графика (презентации)

Разнообразные публичные выступления часто требуют использования демонстрационного материала. Такая потребность возникает при чтении доклада на научной конференции, представлении новой технической разработки или нового вида товара, отчета о разработанном проекте и во многих других случаях. В прежние времена для этих целей рисовались плакаты на листах ватмана; затем появилась проекционная техника: эпидиаскопы, слайд-проекторы, кодоскопы. В последнее время на смену этим способам демонстраций пришли компьютерные презентации.

Информация о работе Представление в компьютере графической информации и стандартные средства работы с ней в системах MS Windows