Курс лекций "Сетевым технологиям"

Автор: Пользователь скрыл имя, 27 Мая 2012 в 04:03, курс лекций

Краткое описание

Работа содержит курс лекций по дисциплине "Сетевые технологии"

Файлы: 21 файл

1-1Беспроводная среда передачи.doc

— 575.50 Кб (Открыть, Скачать)

1-2new09Локальные беспроводные сети.doc

— 410.50 Кб (Открыть, Скачать)

1-3Персональные сети(Bluetooth).doc

— 580.00 Кб (Открыть, Скачать)

1-4WI-Max.doc

— 300.50 Кб (Открыть, Скачать)

2 Введение в глобальные сети.doc

— 161.50 Кб (Открыть, Скачать)

2- Эталонная модель OSI.doc

— 858.50 Кб (Открыть, Скачать)

4-1 Основы сетей передачи данных.doc

— 178.00 Кб (Открыть, Скачать)

4-1маршрутизация.doc

— 109.00 Кб (Открыть, Скачать)

4-2маршрутизация.doc

— 258.50 Кб (Открыть, Скачать)

5-1protocol IP.doc

— 116.91 Кб (Открыть, Скачать)

5-2Протокол IPX.doc

— 155.50 Кб (Открыть, Скачать)

6-1Три типа адресов TCP.doc

— 97.00 Кб (Открыть, Скачать)

6-ПпротоколTCP.doc

— 387.50 Кб (Открыть, Скачать)

7-1Глобальные сети с коммутацией пакетов.doc

— 71.00 Кб (Открыть, Скачать)

7-2Глобальные сети с коммутацией пакетов.doc

— 2.88 Мб (Открыть, Скачать)

7-3Технология ATМ.doc

— 857.00 Кб (Скачать)

Технология  ATM

Гетерогенность  — неотъемлемое качество любой крупной  вычислительной сети, и на согласование разнородных компонентов системные  интеграторы и администраторы тратят большую часть своего времени. Поэтому любое средство, сулящее перспективу снижения неоднородности сети, привлекает пристальный интерес сетевых специалистов. Технология асинхронного режима передачи (Asynchronous Transfer Mode, ATM) разработана как единый универсальный транспорт для нового поколения сетей с интеграцией услуг, которые называются широкополосными сетями ISDN (Broadband-ISDN, B-ISDN).

По планам разработчиков единообразие, обеспечиваемое ATM, будет состоять в том, что одна транспортная технология сможет обеспечить несколько перечисленных ниже возможностей.

  • Передачу в рамках одной транспортной системы компьютерного и мультимедийного (голос, видео) трафика, чувствительного к задержкам, причем для каждого вида трафика качество обслуживания будет соответствовать его потребностям.
  • Иерархию скоростей передачи данных, от десятков мегабит до нескольких гигабит в секунду с гарантированной пропускной способностью для ответственных приложений.
  • Общие транспортные протоколы для локальных и глобальных сетей.
  • Сохранение имеющейся инфраструктуры физических каналов или физических протоколов: SDH, PDH, FDDI.
  • Взаимодействие с унаследованными протоколами локальных и глобальных сетей: IP, SNA, Ethernet, ISDN.

Технология  ATM совмещает в себе подходы двух технологий — коммутации пакетов и коммутации каналов. От первой она взяла на вооружение передачу данных в виде адресуемых пакетов, а от второй — технику виртуальных каналов и использование пакетов небольшого фиксированного размера, в результате чего задержки в сети становятся более предсказуемыми. С помощью техники виртуальных каналов, предварительного заказа параметров качества обслуживания канала и приоритетного обслуживания виртуальных каналов с разным качеством обслуживания удается добиться передачи в одной сети разных типов трафика без дискриминации.

Хотя  сети ISDN также разрабатывались для передачи различных видов трафика в рамках одной сети, голосовой трафик явно был для разработчиков более приоритетным. Технология ATM с самого начала разрабатывалась как технология, способная обслуживать все виды трафика в соответствии с их требованиями.

Разработку  стандартов ATM осуществляет группа организаций под названием ATM Forum под эгидой специального комитета IEEE, а также комитеты ITU-T и ANSI.

Основные  принципы технологии ATM

Сеть  ATM имеет классическую структуру крупной территориальной сети — конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые, в свою очередь, соединяются с коммутаторами более высоких уровней. Коммутаторы ATM пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов. Для частных сетей ATM определен протокол маршрутизации PNNI (Private NNI), с помощью которого коммутаторы могут строить таблицы маршрутизации автоматически. В публичных сетях ATM таблицы маршрутизации могут строиться администраторами вручную, как и в сетях Х.25, или поддерживаться протоколом PNNI.

Коммутация  пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла ATM, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т. п., что упрощает маршрутизацию запросов на установление соединения, как и в случае агрегированных IP-адресов в соответствии с техникой CIDR. В публичных сетях ATM обычно используются адреса в стандарте Е.164, что делает простым взаимодействие этих сетей с телефонными сетями.

Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC). Для ускорения коммутации в больших сетях используется понятие виртуального пути — Virtual Path, который объединяет виртуальные каналы, имеющие в сети ATM общий маршрут между исходным и конечным узлами или общую часть маршрута между некоторыми двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии ATM применена на двух уровнях — на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).

Соединения  конечной станции ATM с коммутатором нижнего уровня определяются стандартом UNI (User Network Interface). Спецификация UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола ATM, способы установления виртуального канала и способы управления трафиком.

Стандарт  ATM не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети — это скорость STM-1 155 Мбит/с. Магистральное оборудование ATM работает и на более высоких скоростях STM-4 622 Мбит/с и STM-16 2,5 Гбит/с. На скорости 155 Мбит/с можно использовать не только волоконно-оптический кабель, но и неэкранированную витую пару категории 5. На скорости 622 Мбит/с допустим только волоконно-оптический кабель, причем для глобальных сетей это одномодовый кабель, а для локальных — как одномодовый, так и многомодовый (в зависимости от скорости и расстояния). Работа на сверхвысоких скоростях существенно удорожает оборудование ATM из-за сложности реализации операций разбиения пакетов на ячейки и сборки ячеек в пакеты в интерфейсных заказных БИС коммутаторов.

Все перечисленные  выше характеристики технологии ATM не свидетельствуют о том, что это некая «особенная» технология, а скорее представляют ее как типичную технологию глобальных сетей, основанную на технике виртуальных каналов. Особенности же технологии ATM лежат в области качественного обслуживания разнородного трафика и объясняются стремлением решить задачу совмещения в одних и тех же каналах связи и в одном и том же коммуникационном оборудовании компьютерного и мультимедийного трафика таким образом, чтобы каждый тип трафика получил требуемый уровень обслуживания.

Трафик  вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Компьютер посылает пакеты в сеть в случайные моменты времени, по мере возникновения в этом необходимости. При этом интенсивность посылки пакетов в сеть и их размер могут изменяться в широких пределах — например, коэффициент пульсаций трафика (отношения максимальной мгновенной интенсивности трафика к его средней интенсивности) протоколов без установления соединений может доходить до 200, а протоколов с установлением соединений — до 20. Чувствительность компьютерного трафика к потерям данных высокая, так как без утраченных данных обойтись нельзя и их необходимо восстановить путем повторной передачи.

Мультимедийный  трафик, передающий, например, голос  или изображение, характеризуется низким коэффициентом пульсаций, высокой чувствительностью к задержкам передачи данных (отражающихся на качестве воспроизводимого непрерывного сигнала) и низкой чувствительностью к потерям данных (из-за инерционности физических процессов потерю отдельных замеров голоса или кадров изображения можно компенсировать сглаживанием на основе предыдущих и последующих значений).

Подход, реализованный в  технологии ATM, состоит в передаче любого вида трафика — компьютерного, телефонного или видео — пакетами фиксированной и очень маленькой длины в 53 байта. Пакеты ATM называют ячейками (cell). Поле данных ячейки занимает 48 байт, а заголовок — 5 байт.

Чтобы пакеты содержали адрес узла назначения и в то же время процент служебной информации не превышал размер поля данных пакета, в технологии ATM применен стандартный для глобальных вычислительных сетей прием — передача ячеек в соответствии с техникой виртуальных каналов с длиной номера виртуального канала размером в 24 бит, что вполне достаточно для обслуживания большого количества виртуальных соединений каждым портом коммутатора глобальной сети ATM.

Размер ячейки ATM является результатом компромисса между телефонистами и компьютерщиками — первые настаивали на размере поля данных в 32 байта, а вторые — в 64 байта.

Использование в АТМ ячеек небольшого размера ( создают условия для качественного  обслуживания) имеют обратную сторону. Платой за качество является высокий уровень нагрузки на АТМ – коммутаторы при работе на высоких скоростях. Объем работы, выполняемый коммутатором, пропорционален количеству обрабатываемых в единицу времени пакетов. Очевидно, что использование ячеек размером в 48 байт приводит к большому росту объема работы для АТМ – коммутаторов, по сравнению с коммутаторами Ethernet, работающими с кадрами в 1500 байт.

Из-за этого  обстоятельства АТМ - коммутаторы долго  не могли превзойти скорость в 622 мб/с и только сравнительно недавно стали поддерживать скорость 2,5 гб/с.

Выбор для передачи данных любого типа небольшой  ячейки фиксированного размера еще  не решает задачу совмещения разнородного трафика в одной сети, а только создает предпосылки для ее решения. Для полного решения этой задачи технология ATM привлекает и развивает идеи заказа пропускной способности и качества обслуживания, реализованные в технологии frame relay. Но если сеть frame relay изначально была предназначена для передачи только пульсирующего компьютерного трафика (в связи с этим для сетей frame relay так трудно дается стандартизация передачи голоса), то разработчики технологии ATM проанализировали всевозможные образцы трафика, создаваемые различными приложениями, и выделили 4 основных класса трафика, для которых разработали различные механизмы резервирования и поддержания требуемого качества обслуживания.

Класс трафика (называемый также классом услуг — service class) качественно характеризует требуемые услуги по передаче данных через сеть ATM. Если приложение указывает сети, что требуется, например, передача голосового трафика, то из этого становится ясно, что особенно важными для пользователя будут такие показатели качества обслуживания, как задержки и вариации задержек ячеек, существенно влияющие на качество переданной информации — голоса или изображения, а потеря отдельной ячейки с несколькими замерами не так уж важна, так как, например, воспроизводящее голос устройство может аппроксимировать недостающие замеры и качество пострадает не слишком. Требования к синхронности передаваемых данных очень важны для многих приложений — не только голоса, но и видеоизображения, и наличие этих требований стало первым критерием для деления трафика на классы.

Другим  важным параметром трафика, существенно влияющим на способ его передачи через сеть, является величина пульсаций. Разработчики технологии ATM решили выделить два различных типа трафика в отношении этого параметра — трафик с постоянной битовой скоростью (Constant Bit Rate, CBR) и трафик с переменной битовой скоростью (Variable Bit Rate, VBR).

К разным классам были отнесены трафики, порождаемые  приложениями, использующими для обмена сообщениями протоколы с установлением соединения и без установления соединения. В первом случае данные передаются самим приложением достаточно надежно, как это обычно делают протоколы с установлением соединения, поэтому от сети ATM высокой надежности передачи не требуется. А во втором случае приложение работает без установления соединения и восстановлением потерянных и искаженных данных не занимается, что предъявляет повышенные требования к надежности передачи ячеек сетью ATM.

В результате было определено пять классов трафика, отличающихся следующими качественными характеристиками:

  • наличием или отсутствием пульсации трафика, то есть трафики CBR или VBR;
  • требованием к синхронизации данных между передающей и принимающей сторонами;
  • типом протокола, передающего свои данные через сеть ATM, — с установлением соединения или без установления соединения (только для случая передачи компьютерных данных).

Основные  характеристики классов трафика  ATM приведены в табл. 1.

 Таблица 1. Классы трафика ATM

Класс трафика Характеристика
А Постоянная  битовая скорость — Constant Bit Rate, CBR
Требуются временные соотношения между передаваемыми и принимаемыми данными
С установлением соединения
Примеры: голосовой трафик, трафик телевизионного изображения
В Переменная  битовая скорость — real-timeVariable Bit Rate, rtVBR
Требуются соблюдение средней скорости передачи данных, требуются временные соотношения между передаваемыми и принимаемыми данными
С установлением соединения
Примеры: компрессированный голос, компрессированное  видеоизображение
С Переменная битовая скорость — non real-time Variable Bit Rate, ntVBR
He требуются временные соотношения между передаваемыми и принимаемыми данными
С установлением соединения
Примеры: трафик компьютерных сетей, в которых  конечные узлы работают по протоколам с установлением соединений: frame relay, Х.25, LLC2, TCP
D Переменная  битовая скорость — —  Available Bit Rate, ABR
He требуются временные соотношения между передаваемыми и принимаемыми данными, требуется min скорость передачи данных
Без установления соединения
Примеры: трафик компьютерных сетей, в которых конечные узлы работают по протоколам без установления соединений (IP, Ethernet, DNS, SNMP)
Х
    Unspecified Bit Rate, UBR

    Тип трафика и его параметры определяются пользователем

8-1Организация доступа нов.doc

— 753.00 Кб (Открыть, Скачать)

8-2 Сеть Eternet.doc

— 248.00 Кб (Открыть, Скачать)

8-2Модемы.doc

— 841.00 Кб (Открыть, Скачать)

8-3 Cкоростные версии Eternet.doc

— 343.00 Кб (Открыть, Скачать)

9Брандмауэры.doc

— 87.00 Кб (Открыть, Скачать)

Информация о работе Курс лекций "Сетевым технологиям"