Автор: Пользователь скрыл имя, 27 Мая 2012 в 04:03, курс лекций
Работа содержит курс лекций по дисциплине "Сетевые технологии"
Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети — это соединение разного оборудования, а значит, проблема совместимости является одной из наиболее острых.. Без принятия всеми производителями общепринятых правил построения оборудования прогресс в деле «строительства» сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стандартах — любая новая технология только тогда приобретает «законный» статус, когда ее содержание закрепляется в соответствующем стандарте.
В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаимодействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.
Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
Организация взаимодействия между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием — декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей (рис. 1.). Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интерфейсов между ними. В результате достигается логическое упрощение задачи, а кроме того, появляется возможность модификации отдельных модулей без изменения остальной части системы.
Рис. 1. Пример декомпозиции задачи
При декомпозиции часто используют многоуровневый подход. Он заключается в следующем. Все множество модулей разбивают на уровни. Уровни образуют иерархию, то есть имеются вышележащие и нижележащие уровни (рис. 2.). Множество модулей, составляющих каждый уровень, сформировано таким образом, что для выполнения своих задач они обращаются с запросами только к модулям непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая декомпозиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и возможность их легкой замены.
Средства сетевого взаимодействия, конечно, тоже могут быть представлены в виде иерархически организованного множества модулей. При этом модули нижнего уровня могут, например, решать все вопросы, связанные с надежной передачей электрических сигналов между двумя соседними узлами. Модули более высокого уровня организуют транспортировку сообщений в пределах всей сети, пользуясь для этого средствами упомянутого нижележащего уровня. А на верхнем уровне работают модули, предоставляющие пользователям доступ к различным службам — файловой, печати и т. п. Конечно, это
только один из множества возможных вариантов деления общей задачи организации сетевого взаимодействия на частные подзадачи.
Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму
Рис. 2. Многоуровневый подход - создание иерархии задач
электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т. п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого — уровня передачи битов — до самого высокого, реализующего сервис для пользователей сети.
Рис. 3. Взаимодействие двух узлов
На рис. 3. показана модель взаимодействия двух узлов. С каждой стороны средства взаимодействия представлены четырьмя уровнями. Процедура взаимодействия этих двух узлов может быть описана в виде набора правил взаимодействия каждой пары соответствующих уровней обеих участвующих сторон. Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах называется протоколом.
Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню. В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы — модулей соседних уровней в одном узле.
Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.
Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком протоколов.
Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней — как правило, чисто программными средствами.
Программный модуль, реализующий некоторый протокол, часто для краткости также называют «протоколом». При этом соотношение между протоколом — формально определенной процедурой и протоколом — программным модулем, реализующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.
Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько программных реализаций. Именно поэтому при сравнении протоколов следует учитывать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокупности протоколов, составляющих стек, в частности, насколько рационально распределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.
Эталонная модель OSI
Для наглядности процесс работы сети в эталонной модели OSI разделен на семь уровней. Эта теоретическая конструкция облегчает изучение и понимание довольно сложных концепций. В верхней части модели OSI располагается приложение, которому нужен доступ к ресурсам сети, в нижней — сама сетевая среда. По мере того как данные продвигаются от уровня к уровню вниз, действующие на этих уровнях протоколы постепенно подготавливают их для передачи по сети. Добравшись до целевой системы, данные продвигаются по уровням вверх, причем те же протоколы выполняют те же действия, только в обратном порядке.
В 1983 г. Международная организация по стандартизации (International Organization for Standardization, ISO) и Сектор стандартизации телекоммуникаций Международного телекоммуникационного союза (Telecommunication Standardization Sector of International Telecommunication Union. ITU-T) опубликовали документ «The Basic Reference Model for Open Systems Interconnection», где была описана модель распределения сетевых функций между 7 различными уровнями (рис. 4). Предполагалось, что эта семиуровневая структура станет основой для нового стека протоколов, но в коммерческой форме он так и не был реализован. Вместо этого модель OSI используется с существующими стеками протоколов в качестве обучающего и справочного пособия.
Рис.4. Уровни эталонной модели OSI
Большая часть популярных в наши дни протоколов появилась до разработки модели OSI, поэтому в точности с ее семиуровневой структурой они не согласуются. Зачастую в одном протоколе совмещены функции двух или даже нескольких уровней модели, да и границы протоколов часто не соответствуют границам уровней OSI. Тем не менее модель OSI остается отличным наглядным пособием для исследования сетевых процессов, и профессионалы часто связывают функции и протоколы с определенными уровнями.
Приложения могут реализовывать собственные протоколы взаимодействия, используя для этого многоуровневую совокупность средств. Для этого для программистов предоставляется прикладной программный интерфейс (АРI). Приложения могут обращаться с запросами к самому верхнему уровню – уровню приложений, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенным ниже уровней.
Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. Приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI.
Пусть приложение узла А хочет взаимодействовать с приложением узла В (см. рис 5). Для этого приложение А обращается с запросом к прикладному уровню (файловой службе). На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Затем прикладной уровень направляет его вниз уровню представления. Протокол уровня представления на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию. Сообщение передается сеансовому уровню и т.д., пока не достигнет физического уровня.
Инкапсуляция данных
По сути, взаимодействие протоколов, работающих на разных уровнях модели OSI, проявляется в том, что каждый протокол добавляет заголовок (header) или (в одном случае) трейлер (footer) к информации, которую он получил от уровня, расположенного выше. Например, приложение генерирует запрос к сетевому ресурсу. Этот запрос продвигается по стеку протоколов вниз. Когда он достигает транспортного уровня, протоколы этого уровня добавляют к запросу собственный заголовок, состоящий из полей с информацией, специфической для функций данного протокола. Сам исходный запрос становится для протокола транспортного уровня полем данных (полезной нагрузкой). Добавив свой заголовок, протокол транспортного уровня передает запрос сетевому уровню. Протокол сетевого уровня добавляет к заголовку протокола транспортного уровня свой собственный заголовок. Таким образом, для протокола сетевого уровня полезной нагрузкой становятся исходный запрос и заголовок протокола транспортного уровня. Вся эта конструкция становится полезной нагрузкой для протокола канального уровня, который добавляет к ней заголовок и трейлер. Итогом этой деятельности является пакет (packet), готовый для передачи по сети. Когда пакет достигает места назначения, процесс повторяется в обратном порядке. Протокол каждого следующего уровня стека (теперь снизу вверх) обрабатывает и удаляет заголовок эквивалентного протокола передающей системы. Когда процесс завершен, исходный запрос достигает приложения, которому он предназначен, в том же виде, в каком он был сгенерирован.
Процесс добавления заголовков к запросу (рис. 6), сгенерированному приложением, называется инкапсуляцией данных (data encaрsulation). По сути эта процедура напоминает процесс подготовки письма для отправки по почте. Запрос — это само письмо, а добавление заголовков аналогично вкладыванию письма в конверт, написанию адреса, штемпелеванию и собственно отправке.
Рис. 6. Двигаясь по стеку протоколов вниз, данные «обрастают» заголовками и трейлерами
На самом нижнем уровне модели OSI — физическом (physical) — имеет дело с передачей потока битов по физическим канала связи, такими как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой канал.
Функции этого уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера эти функции выполняются сетевым адаптером или последовательным портом.
Примером протокола физического уровня может служить спецификация 10BaseT технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, max длину физического сегмента 100 М, манчестерский код для представления данных в кабеле и др. характеристики сигналов.
Коммуникационный элемент, определяемый на физическом уровне, — тип сигнала для передачи данных по сетевой среде. Для кабелей с медной основой таким сигналом является электрический заряд, для оптоволоконного кабеля — световой импульс. В сетевых средах других типов могут использоваться радиоволны, инфракрасные импульсы и другие сигналы. Помимо природы сигналов, на физическом уровне устанавливается схема их передачи, т. е. комбинация электрических зарядов или световых импульсов, используемая для кодирования двоичной информации, которая сгенерирована вышестоящими уровнями. В системах Ethernet применяется схема передачи сигналов, известная как манчестерская кодировка (Manchester encoding), а в системах Token Ring используется дифференциальная манчестерская (Differential Manchester) схема.
Физический уровень не вникает в смысл информации, которую он передает. Для него информация представляет поток битов, которые нужно доставить без искажений и в соответствии с заданной тактовой частотой (интервалом между соседними битами).
Протокол канального (data-link) уровня обеспечивает обмен информацией между аппаратной частью включенного в сеть компьютера и сетевым ПО. Он подготавливает для отправки в сеть данные, переданные ему протоколом сетевого уровня, и передает на сетевой уровень данные, полученные системой из сети.
Функции средств канального уровня определяются по-разному для локальных и глобальных сетей: