Компьютерная графика, классификация принципиальные отличия

Автор: Пользователь скрыл имя, 19 Декабря 2012 в 10:24, реферат

Краткое описание

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности.

Оглавление

Введение
1. Компьютерная графика ……………………………………………………..5
1.1 Форматы графических файлов…………………………………………...6
1.2 Графические модели……………………………………………………...9
1.3 Цвет и цветовые модели………………………………………………...11
2. Классификация компьютерной графики, принципиальные отличия……16
2.1 Растровая графика……………………………………………………….16
2.2 Векторная графика………………………………………………………19
2.3 Фрактальная графика……………………………………………………22
2.4 Трехмерная графика…………………………………………………......22
Заключение……………………………………………………………………….26
Список используемых источников……………………………………………...27

Файлы: 1 файл

Информационная технология.doc

— 349.00 Кб (Скачать)

линия; прямоугольник; сплайн-объект.

В графике термин «вектор» используется для обозначения  части линии и задается конечным набором точек.

Растровая модель

В ней изображение описывается попиксельно, а не отдельными объектами. Растровые данные представляют собой набор числовых значений, определяющих цвета отдельных пикселей.

Растр – правильная сетка, покрывающая всю поверхность изделия.

Пиксели - это цветовые точки, расположенные на правильной сетке и формирующие образ. Хотя мы и говорим, что растр это массив пикселей, технически, растром являются числовые значения, задающие соответствующие цвета отдельных пикселей на устройстве вывода. Для обозначения числового значения в растровых данных соответствующего цвета пикселя в изображении применяется термин пиксельное значение. Пример растровых данных:

чёрный цвет - нулевая интенсивность, белый цвет – максимальная интенсивность.

Раньше для  представления числовых значений использовался  термин «bitmap», «pixmap». Термин «bitmap» используется для обозначения массивов пикселей, независимо от типа ,а термин «битовая глубина» используется для указания размеров этих пикселей, выраженная в битах или байтах. Битовая глубина определяет кол-во возможных цветов пикселя:1 бит=2 цвета(0 или 1),4 бита=16 цветов (0000,0001,...1111), 8, 16, 24, 32, 48 бит/пиксель.

Обе они предназначены  для представления в памяти ПК 2-хмерного изображения, поэтому эти 2 изображения считают моделями.

Сетчатая  модель – 3-хмерная модель. Используется тогда, когда меняется ракурс изображения сцены или взаимное расположение объектов изображения.

Сетчатая модель представляется в памяти ПК не изображение, а 3-хмерные геометрические объекты, при проецировании которых на ту или иную плоскость изображение получается автоматически. В этой модели объекты представлены в виде пустотелых, не имеющих физической толщины оболочек, составленных из многозначных плоских граней (параллелограмм, шар, пирамида – надо эти три фигуры нарисовать). Физическим аналогом является каркас фигуры, отсюда второе название «каркасная», либо – «полигональная». Основными структурными единицами сетчатой модели является вершина, ребра, грани и полигоны.

 

 

    1. Цвет и цветовые модели

В компьютерной графике применяют понятие цветового разрешения (другое название – глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов.

С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие). В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании). Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Гроссмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый  закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй  закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий  закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

C1=R1R+G1G+B1B; 
C2=R2R+G2G+B2B; 
Cn=RnR+GnG+BnB; 
Cсумм=(R1+R2+…+Rn)R+(G1+G2+…+Gn)G+ (B1+B2+…+Bn)B.

 

Цветовые  модели.

Для описания цветов применяют несколько различных математических систем, которые называются цветовыми моделями. Выбор подходящей цветовой модели зависит от типа данных, содержащихся в файле. Для однобитовых и полутонных грамотно использовать разные цветовые модели. Цветовые модели бывают: 1) ахроматические; 2) аддитивные; 3) субтрактивные; 4) перцепционные; 5) повышенной точности.

Ахроматические  модели – модели, не включающие цвета. Представляет штриховое и монохромное изображение.

Штриховое изображение – точеное изображение, каждое из пикселей которого может быть только из 1 или 2-х цветов. Один из этих цветов является фоновым, другой это цвет переднего плана. Для описания каждого пикселя используется только один бит. Самая компактная модель для представления графиков, чертежей, схем, штриховых рисунков.

Монохромное изображение – отличаются от штрихового тем, что составляющая пикселя м.б. одного из оттенков, составленная из смеси двух базовых цветов. В зависимости от технологии последнего восприятия, монохромная модель может иметь 100 оттенков, если она задана в процентах и 256, если задана в значениях. Для описания одного пикселя потребуется 1 байт информации. Получим изображение в 8 раз больше, чем предыдущее. Монохромное изображение распространено в полиграфии. Также используется при цветной печати, когда происходит цветоделение: исходное изображение делится на несколько монохромных, которые при печати накладываются др. на др.

Цветовая  модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage – международная комиссия по совещанию. L, a, b – обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая  модель RGB

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов – красного (Red), зеленого (Green), синего (Blue). Она служит основой при создании и обработке компьютерной графики, предназначенной для электронного воспроизведения (на мониторе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому – максимальные, с координатами (255,255,255).

0 (255,255,255) – белый

1 (0,0,0) – черный

2 (255,0,0) – красный

3 (0,255,0) – зеленый

4 (0,0,255) – синий

5 (255,255,0) – желтый

6 (0,255,255) – голубой

7 (255,0,255) – фиолетовый

8 (128,0,0) – темно-красный

9 (0,128,0) – темно-зеленый

10 (0,0,128) – темно-синий

11 (128,128,0) – горчичный

12 (0,128,128) – грязно голубой

13 (128,0,128) – темно-фиолетовый

14 (128,128,128) – серый

15 (255,128,128) – коричнево-розовый

Суммарное количество двоичных разрядов, которая отводится для  представления информации одного пикселя называют цветовой разрешающей способностью или битовой глубиной. Она измеряется в бит/пиксель (bit per pixel) и количество  максимального отображения цвета определяется по формуле 2n , где n- битовая глубина.  # 8 bpp=256 цветов [ 2 8].

Цветовая модель HSB

Цветовая модель HSB разработана с максимальным учетом особенностей восприятия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brigfitness). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности – чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекрывает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специальные программы, имитирующие кисти, перья, карандаши. Обеспечивается имитация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации.

Цветовая  модель CMYK, цветоделение

Цветовая модель CMYK относится к субтрактивным, и ее используют при подготовке публикаций к печати. Цветовыми компонентами CMY служат цвета, полученные вычитанием основных из белого:

  • голубой (cyan) = белый - красный = зеленый + синий;
  • пурпурный (magenta) = белый - зеленый = красный + синий;
  • желтый (yellow) = белый - синий = красный + зеленый.

Такой метод  соответствует физической сущности восприятия отраженных от печатных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY – наложение друг на друга дополнительных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK). Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.

 

 

  1. Классификация компьютерной графики, принципиальные отличия

 

    1. Растровая графика

   Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой представлена цветной точкой.

    Основой растрового представления графики является пиксель (точка) с указанием ее цвета.

  Растровые изображения напоминают лист клетчатой бумаги, на котором любая клетка закрашена либо черным, либо белым цветом, образуя в совокупности рисунок.

Пиксел – основной элемент растровых изображений. Именно из таких элементов состоит растровое изображение, т.е. растровая графика описывает изображения с использованием цветных точек (пиксели), расположенных на сетке.

Для растровых  изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

·     разрешение оригинала;

·     разрешение экранного изображения;

·     разрешение печатного изображения.

Разрешение  оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение  экранного изображения.  Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для  обработки изображений с диагональю 20–21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии  достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Информация о работе Компьютерная графика, классификация принципиальные отличия