Автор: Пользователь скрыл имя, 02 Марта 2013 в 19:41, дипломная работа
Целью выпускной работы является разработка алгоритмического подхода к изучению элементов комбинаторики методов их перебора.
Задачи исследования:
1) изучить литературу по теме выпускной работы;
2) провести сравнительный анализ элементов комбинаторики и правил их построения, описания алгоритмов перебора сочетаний, перестановок и размещений;
3) описать методику решения численных задач дискретного анализа;
4) подготовить рекомендации по усовершенствованию логики изложения некоторых вопросов комбинаторики.
Введение
1. Комбинаторные задачи в школьном курсе математики 9
1.1. Сочетание по m элементов из n 9
1.2. Перестановки из элементов n 11
1.3. Размещение m элементов по n позициям 14
2. Алгоритмы перебора 18
2.1. Перебор сочетаний, перестановки, размещения. 18
3. Большие числа 25
3.1. Упаковка натурального числа в виде массива 25
3.2. Сравнение больших чисел 29
3.3. Сложение и вычитание двух больших чисел 36
4. Комбинаторные алгоритмы. Сочетание 40
4.1. Генерация сочетания по его номеру 40
4.2. Сочетания с повторениями 47
5. Комбинаторные алгоритмы. Перестановки 50
5.1. Число перестановок из n элементов 50
5.2 Определение номера перестановки. Определение перестановки по номеру 52
5.3. Перестановки с повторениями 54
6. Множества и алгоритмы перебора 56
6.1. Подмножество. Перечисление подмножеств 56
6.2. Нумерация подмножеств 59
6.3. Скобочные последовательности и их нумерация 64
ЗАКЛЮЧЕНИЕ 70
ЛИТЕРАТУРА 72
Генерация k-элементных подмножеств
В комбинаторике такие подмножества называют сочетаниями из n элементов по k элементов и обозначают Cnk . Их количество выражается следующей формулой:
Однако при программировании гораздо удобнее использовать следующие рекуррентные соотношения:
Объясняется это тем, что в формуле (1) числитель и знаменатель растут очень быстро, поэтому в силу особенностей компьютерной арифметики не всегда возможно точно вычислить значение Cnk, даже когда последнее не превосходит максимально представимое целое число.
При фиксированном значении n макси
Если допустить, что за время, отведенное для решения задачи, мы можем перебрать около 106 вариантов, то из формулы (3) следует, что генерацию всех сочетаний из n элементов для любого фиксированного k можно проводить для n £ 24.
Обычно генерацию всех k-
Рассмотрим рекурсивный алгоритм решения данной задачи. Идея сведения данной задачи к задаче меньшей размерности следующая. Первым элементом подмножества может быть любой элемент, начиная с первого и заканчивая (n – k + 1)-м элементом. После того, как индекс первого элемента подмножества зафиксирован, осталось выбрать k – 1 элемент из элементов с индексами, большими, чем у первого. Далее поступаем аналогично. Когда выбран последний элемент, то мы достигли конечного уровня рекурсии и выбранное подмножество можно обработать (проанализировать или распечатать). В предлагаемой ниже программе массив a содержит значения элементов исходного множества и может быть заполнен произвольным образом. В массиве p будем формировать очередное сочетание из k элементов.
const nmax = 24;
type list = array[1..nmax] of integer;
var k,i,j,n,q : integer;
a,p : list;
procedure print(k : integer);
var i:integer;
begin
for j:=1 to k do
write(p[j]:4);
writeln
end;{print}
procedure cnk(n,k : integer);
procedure gen(m,L : integer);
var i:integer;
begin
if m=0 then print(k) else
for i:=L to n-m+1 do
begin
p[k-m+1]:=a[i];
gen(m-1,i+1)
end
end;{gen}
begin {cnk}
gen(k,1)
end;{cnk}
begin {main}
readln(n,k);
for i:=1 to n do
a[i]:=i;{заполнить массив можно и по-другому}
cnk(n,k)
end.
Заметим, что собственно
генерация сочетаний
Генерация всех подмножеств данного множества
При решении олимпиадных задач чаще всего заранее неизвестно, сколько именно элементов исходного множества должно входить в искомое подмножество, то есть необходим перебор всех подмножеств. Однако, если требуется найти минимальное подмножество, то есть состоящее как можно из меньшего числа элементов (или максимальное подмножество), то эффективнее всего организовать перебор так, чтобы сначала проверялись все подмножества, состоящие из одного элемента, затем из двух, трех и т. д. элементов (для максимального подмножества — в обратном порядке). В этом случае, первое же подмножество, удовлетворяющее условию задачи и будет искомым и дальнейший перебор следует прекратить. Для реализации такого перебора можно воспользоваться, например, процедурой cnk, описанной в предыдущем разделе. Введем в нее еще один параметр: логическую переменную flag, которая будет обозначать, удовлетворяет текущее сочетание элементов условию задачи или нет. При получении очередного сочетания вместо его печати обратимся к процедуре его проверки check, которая и будет определять значение флага. Тогда начало процедуры gen следует переписать так:
procedure gen(m,L:integer);
var i:integer;
begin
if m=0 then
begin
check(p,k,flag);
if flag then exit
end
else ...
Далее процедура дословно совпадает с предыдущей версией. В основной же программе единственное обращение к данной процедуре следует заменить следующим фрагментом:
k:=0;
flag:=false;
repeat
k:=k+1;
cnk(n,1,flag)
until flag or (k=n);
if flag then print(k)
else writeln('no solution');
Очевидно также, что в основной программе запрос значения переменной k теперь не производится.
Существует также
Теперь легко подсчитать
и количество различных
То есть, в рамках сделанной выше оценки на количество допустимых вариантов в переборе, мы можем рассмотреть все подмножества исходного множества только при n £ 20.
Прежде, чем перейти к рассмотрению программ, соответствующих второму способу перебора, укажем, когда применение этих программ целесообразно. Во-первых, данные программы легко использовать, когда необходимо в любом случае перебрать все подмножества данного множества (например, требуется найти все решения удовлетворяющие тому или иному условию). Во-вторых, когда с точки зрения условия задачи не имеет значения, сколько именно элементов должно входить в искомое подмножество. На примере такой задачи мы и напишем программу генерации всех подмножеств исходного множества в лексикографическом порядке. Задача взята из книги [5].
Условие. Дан целочисленный массив a[1..N] (N £ 20) и число M. Найти подмножество элементов массива a[i1], a[i2], ...a[ik] такое, что 1 £ i1 < i2 < i3 < ... < ik £ N и a[i1] + a[i2] + ... + a[ik] = M.
Решение. В качестве решения приведем процедуру генерации всех подмножеств, которые можно составить из элементов массива и функцию проверки конкретного подмножества на соответствие условию задачи.
function check(j:longint):
var k:integer; s:longint;
begin
s:=0;
for k:=1 to n do
if ((j shr (k-1))and 1)=1 {данное условие означает, что в
k-й справа позиции числа j, в 2-й системе, стоит 1}
then s:=s+a[k];
if s=m then
begin
for k:=1 to n do
if ((j shr (k-1))and 1)=1 then write(a[k]:4);
writeln
end
end;
procedure subsets(n:integer);
var q,j:longint;
begin
q:=1 shl n; {таким образом мы помещаем в q число 2^n}
for j:=1 to q-1 do {цикл по всем подмножествам}
if check(j) then exit
end;
Заметим, что если все элементы в массиве положительные, то, изменив порядок рассмотрения подмножеств, решение приведенной выше задачи можно сделать более эффективным. Так, если сумма элементов какого-либо подмножества уже больше, чем M, то рассматривать подмножества, включающие его в себя уже не имеет смысла. Пересчет же сумм можно оптимизировать, если каждое следующее сгенерированное подмножество будет отличаться от предыдущего не более, чем на один элемент.
Приведенная же программа чрезвычайно проста, но обладает одним недостатком: мы не можем ни в каком случае с ее помощью перебирать все подмножества множеств, состоящих из более, чем 30 элементов, что обусловлено максимальным числом битов, отводимых на представление целых чисел в Турбо Паскале (32 бита). Но, как уже было сказано выше, на самом деле, перебор всех подмножеств у множеств большей размерности вряд ли возможен за время, отведенное для решения той или иной задачи.
Генерация всех перестановок n-элементного множества
Количество различных перестановок множества, состоящего из n элементов равно n!. В этом нетрудно убедиться: на первом месте в перестановке может стоять любой из n элементов множества, после того, как мы на первом месте зафиксировали какой-либо элемент, на втором месте может стоять любой из n – 1 оставшегося элемента и т.д. Таким образом, общее количество вариантов равно n(n – 1)(n – 2)...3×2×1 = n!. То есть рассматривать абсолютно все перестановки мы можем только у множест, состоящих из не более, чем 10 элементов.
Рассмотрим рекурсивный
{описание переменных совпадает с приведенным выше}
procedure Permutations(n:integer);
procedure Perm(i:integer);
var j,k:integer;
begin
if i=n then
begin for j:=1 to n do write(a[p[j]],' '); writeln end
else
begin
for j:=i+1 to n do
begin
Perm(i+1);
k:=p[i]; p[i]:=p[j]; p[j]:=k
end;
Perm(i+1);
{циклический сдвиг элементов i..n влево}
k:=p[i];
for j:=i to n-1 do p[j]:=p[j+1];
p[n]:=k
end
end;{Perm}
begin {Permutations}
Perm(1)
end;
begin {Main}
readln(n);
for i:=1 to n do p[i]:=i;
a:=p; {массив a может быть заполнен произвольно}
Permutations(n)
end.
Заметим, что в данной программе массив p можно было и не использовать, а переставлять непосредственно элементы массива a.
Определение: |
Скобочная последовательность — класс комбинаторных объектов, представляющих собой последовательность скобочных символов. |
Примеры скобочных последовательностей:
Определение: |
Правильная скобочная последовательность — частный случай скобочной последовательности, определяющийся следующими образами:
|
Примеры правильных скобочный последовательностей:
Алгоритм проверки правильности скобочной последовательности
Пусть нам дана скобочная последовательность, записанная в строку . Возьмем переменную , . Будем последовательно перебирать все символы этой строки. Если мы встречаем открывающуюся скобку, то увеличиваем на , закрывающую — уменьшаем на . Если на протяжении всего перебора было неотрицательным и после завершения осталось нулем, то скобочная последовательность правильна.
Информация о работе Комбинаторные алгоритмы решения школьных задач по информатике