Автор: Пользователь скрыл имя, 12 Сентября 2013 в 03:41, реферат
В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.
2.7.1.1. Доступ с частотным
МДЧР является наиболее простым и распространенным методом, используемым как в аналоговых, так и цифровых ССС. При МДЧР каждая ЗС передает свои сигналы в отведенном ей участке полосы пропускания ретранслятора. Основной недостаток МДЧР - уменьшение пропускной способности по сравнению с односигнальным режимом, вызванное необходимостью снижения на 4...6 дБ мощности выходного усилителя ретранслятора из-за появления интермодуляционных помех. Кроме того, необходимо обеспечить высокую стабильность частоты и мощности сигнала, излучаемого каждой ЗС. В системах с МДЧР передача может осуществляться как многоканальными сигналами, так и одноканальными с использованием принципа передачи "один канал на несущей" (ОКН). Метод ОКН применяют в основном в сети станций с небольшим числом каналов. Основное преимущество метода состоит в возможности реализации принципа предоставления каналов по требованию. Метод МДЧР широко используется в ССС "Интерспутник", intelsat, национальных ССС многих стран.
Данный метод сложно использовать для подключения большого числа компьютерных абонентских станций и сетей ЭВМ.
2.7.1.2. Доступ с временным
Метод МДВР нашел применение в связи с реализацией цифровых методов передачи. При этом каждой ЗС для излучения сигналов выделяется определенный, периодически повторяемый временной интервал. Интервалы излучения всех станций взаимно синхронизованы, в силу чего перекрытие их не происходит. В каждый момент времени через ретранслятор проходит сигнал только одной станции и отсутствует нелинейное взаимодействие сигналов разных ЗС в усилителе ретранслятора. Метод МДВР получает развитие для передачи данных большого числа абонентских станций, подключенных к сети цифровой телефонной связи и с помощью аппаратуры уплотнения каналов осуществляется организация передачи через главные ЗС. Для подключения большого числа автономных компьютерных абонентских станций и сетей ЭВМ с непосредственной связью со спутниковой станцией требуются значительные затраты при ограниченных возможностях по числу ЗС.
2.7.1.3. Доступ с кодовым разделением (МДКР)
Метод кодового разделения основан на одновременной передаче в полосе частот ретранслятора сигналов нескольких станций, модулированных информационным сигналом и кодовым сигналом - длинной псевдошумовой последовательностью. На приеме информация выделяется путем умножения принятого сигнала на копию псевдошумовой последовательности. Надежное разделение достигается благодаря ортогональности кодовых сигналов отдельных ЗС.
Широкополосные сигналы
- малые помехи
другим системам и слабая
- низкая вероятность перехвата;
- невосприимчивость к засветке Солнцем (при малых антеннах).
Основным недостатком МДКР является низкая эффективность использования пропускной способности ретранслятора (1-2%). Использование МДКР с широкополосными сигналами оправдано в сетях с большим числом редко работающих терминалов при значительном уровне помех, когда экономическая эффективность определяется не степенью загрузки ретранслятора, а резким снижением затрат на земную сеть.
2.7.2. Сравнительное сопоставление основных методов
Основные преимущества метода МДЧР заключаются в простоте оборудования, невысоких требованиях к параметрам тракта передачи, меньшей мощности передатчика ЗС по сравнению с МДВР. С ростом числа участвующих в работе ЗС пропускная способность ствола ретранслятора в режиме МДВР эффективнее, чем в режиме МДЧР.
МДВР позволяет легко
Вместе с тем метод МДВР имеет существенный недостаток, ограничивающий его применение на линиях с малым трафиком - он требует использования на ЗС большой антенны, передатчика сравнительно большой мощности и сложной аппаратуры синхронизации независимо от трафика станции. Специально для сетей с малыми станциями разработаны методы комбинированного частотно-временного доступа, совмещающие преимущества МДЧР и МДВР.
В простейшем случае ЗС передают свои сообщения в виде пакетов в произвольные моменты времени и ждут подтверждения приема от адресата. Если часть сообщений утрачивается из-за наложения сигналов других ЗС, станция-отправитель повторяет свое сообщение полностью или частично. Протокол доступа ALOHA и его разновидности пригодны в сетях передачи данных при незначительном графике и обеспечивают эффективность использования ретранслятора не более 25%.
На одной или нескольких несущих
в МДЧР-системе могут
Другой метод - МДВР с многими несущими, иначе называется многочастотным МДВР или МДЧР/МДВР. В режиме МДВР с многими несущими полоса частот ретранслятора делится на ряд меньших полос, в каждой из которых передается на отдельной несущей индивидуально или методом МДВР сравнительно низкоскоростная (до 2 Мбит/с) информация от малых ЗС. Эффективность использования ретранслятора снижается в меньшей степени, чем при МДЧР, и в то же время каждая ЗС работает с меньшей скоростью, чем в классическом МДВР с одной несущей.
В одном из вариантов ЗС может передавать свои пакеты поочередно на разных несущих частотах, занимая свободные окна в кадре. Синхронизация осуществляется путем сравнения тактовых частот, генерируемых различными ЗС и передаваемых периодически в составе пакетов, с тактовой частотой, генерируемых на борту. Разностный сигнал транслируется на ЗС и используется для подстройки тактового генератора. Мощность ЗС на передачу при этом будет минимальной, а использование ретранслятора - максимальным. Практическую реализацию указанного режима затрудняет сложность бортового ретранслятора, который должен обеспечить демодуляцию принятых сигналов, выделение цифровых потоков отдельных ЗС, компрессию, объединение в общий цифровой поток, формирование сигналов управления и сигнализации.
Возможны промежуточные, менее сложные режимы обработки сигнала на борту, используемые также на линиях магистральной связи: коммутация на сверхвысоких частотах (СВЧ), коммутация в групповом спектре частот с регенерацией и без регенерации сигнала. В спутнике с многолучевыми антеннами и коммутацией на борту бортовая коммутационная матрица осуществляет необходимые соединения между лучами линий вверх и вниз в соответствии с потребностями трафика. Недостатком метода обработки на борту является жесткая привязка конструкции ИСЗ к конфигурации сети и способам формирования передаваемых сигналов.
2.8. Земные станции (ЗС) спутниковых систем связи
ЗС принято разделять в
- приемо-передающие,
работающие в сети
- приемные
станции распределительных
- передающие
ЗС и приемные установки
- абонентские терминалы подвижных служб.
Малые ЗС занимают промежуточное положение между первыми двумя категориями. Основными показателями для всех ЗС являются:
- диапазон частот на передачу и прием;
- добротность
станции (отношение
- эквивалентная изотропно излучаемая мощность.
2.8.1. Антенны ЗС
Антенна ЗС должна иметь высокий
коэффициент использования
2.8.2. Построение типовой ЗС
Типовая ЗС Intelsat стандарта В работает в диапазоне 6/4 ГГц и содержит двухзеркальную антенну Кассегрена с диаметром основного зеркала 9 - 14 м. Среднеквадратичное отклонение профиля зеркала от расчетного не превышает 1 мм. Уровень боковых лепестков диаграммы направленности удовлетворяет типовым нормам. Автосопровождение ИСЗ осуществляется методом экстремального регулирования, точность наведения составляет 0,06 град. В качестве МШУ в зависимости от диаметра используются неохлаждаемые параметрические усилители или транзисторные. Для работы в системе добротность станции должна быть более 31,7 дБ/К.
Станция обеспечивает работу в режимах МДЧР/ЧМ с числом каналов в стволе до 252, МДЧР/ОКН с ИКМ-ФМ с разносом несущих 45 кГц, МДВР со скоростью 120 Мбит/с, передачу данных со скоростями от 64 Кбит/с до 44 Мбит/с, обмен ТВ-программами в полосе ствола 36 МГц.
Для работы в диапазоне 30/20 ГГц в Японии используются ЗС с антенной диаметром 5 м, что равносильно 25 м в диапазоне б/4ГГц. лая компенсации затухания в осадках применяется управление мощностью на передаче. Скорость передачи составляет 1,544 Мбит/с на несущую, что обеспечивает одновременную передачу речевых сообщений, данных, факсимиле, неподвижных изображений.
В рамках Международного консультативного комитета по радиосвязи (МККР) проведены работы по унификации требований к ЗС, что позволило получить рациональные схемные решения. В настоящее время многими компаниями выпускаются специализированные интегральные микросхемы отдельных узлов приемных и передающих устройств, что снизило стоимость ЗС. Стоимость приемной установки с антенной диаметром 1,8 м составляет 1000 -2000 долларов.
2.8.3. Малые ЗС
Еще одной новой формой использования спутниковой связи являются системы, ориентированные на пользователя. С ростом энергетических возможностей ИСЗ, формированием многолучевых диаграмм направленности бортовых антенн становится возможным применение при скоростях передачи до 2 - 8 Мбит/с простых и недорогих малых ЗС, размещаемых непосредственно на здании пользователя, что повышает оперативность, гибкость и надежность связи, исключает необходимость наземной соединительной линии и в конечном счете повышает экономическую эффективность использования спутниковых каналов. Малые ЗС могут использоваться для связи периферийных ЭВМ и персональных компьютеров с центральной большой ЭВМ, дирекции предприятия с филиалами, для периодической передачи собираемой информации и во всех других случаях, когда требуется обеспечить связь с большим числом станций, трафик которых невелик. По данным США , создание в рамках компании частной спутниковой сети оправдано в любом из следующих случаев: товарооборот превышает 500 млн. долл.; численность персонала более 10 тыс. человек; число производственных объектов более 500; затраты на услуги связи превышают 2 млн долл. в год; объем экспорта составляет более 20% от общего товарооборота.
Первые сети малых ЗС создавались в диапазоне 6/4 ГГц, однако, для подавления помех от соседних ИСЗ приходилось применять либо антенны довольно большого диаметра (3...4,5 м), либо неэффективные методы многостанционного доступа. Скорость передачи не превышала 9,6 Кбит/с. В этом диапазоне работают международные системы деловой связи и передачи данных IBS, VISTA, Intelnet. С переходом в диапазон 14/11 ГГц стало возможным обмениваться информацией со скоростью до 64 Кбит/с с малой станцией, имеющей антенну диаметром 1,2...1,8 м. Стоимость данной ЗС составляет около 10000 долларов и продолжает быстро снижаться.
В зависимости от назначения и энергетики ИСЗ сеть малых ЗС может иметь радиальную (с одним или двумя скачками), смешанную или узловую структуры. В сети с одним скачком периферийные станции связываются с центральной, а та, в свою очередь, соединяется по наземным линиям связи с телефонной сетью или сетью передачи данных. В сетях с двумя скачками периферийные ЗС могут связываться между собой через центральную ЗС, выполняющую функции коммутатора, при этом из-за большой задержки сигналов передачи речевых сообщений затруднена. В смешанной сети возможны два варианта организации связи. Наибольшей эффективностью обладает узловая структура сети, когда каждая станция может связываться с каждой напрямую, на одном скачке, а центральная станция выполняет функции контроля и предоставления каналов. В последнем варианте требуется наличие ИСЗ с повышенной энергетикой, например, за счет формирования узких направленных лучей, и обработкой сигналов на борту.