Информационные технологии, использующие системы поддержки принятия решений или системы искусственного интеллекта

Автор: Пользователь скрыл имя, 14 Февраля 2012 в 21:05, реферат

Краткое описание

Одно из актуальных направлений информатики - интеллектуализация информационных технологий. В результате пользователь сможет не только получить сведения на основе обработки данных, но и использовать по интересующей его проблеме накопленный опыт и знания профессионалов. Интеллектуальные системы и технологии применяются для распространения профессионального опыта и решения сложных научных задач. Для обработки и моделирования знаний применяются специальные модели и создаются базы знаний.

Оглавление

Оглавление
Введение 3
Системы поддержки принятия решений 4
Термины и определения 4
OLAP (Оnline Аnalytical Processing) 6
Data Mining 6
Мнение экспертов о Data Mining 7
Характеристика систем поддержки принятия решений 9
Функциональность DSS-систем 11
Основные компоненты 11
Система управления интерфейсом 12
Области применения 13
Телекоммуникации 13
Банковское дело 13
Страхование 14
Розничная торговля 14
Целевые результаты 14
Системы искусственного интеллекта 16
Различные подходы к построению систем искусственного интеллекта 16
Искусственный интеллект 19
Основные направления развития искусственного интеллекта: 21
Экспертные системы (ЭС) 22
Обобщенная структура экспертной системы, основные понятия и определения. 22
Классификация ЭС 23
Классификация по решаемой задаче 24
Интерпретация данных 24
Диагностика 24
Мониторинг 24
Проектирование 24
Прогнозирование 25
Планирование 25
Обучение 25
Классификация по связи с реальным временем 26
Статические ЭС 26
Квазидинамические ЭС 26
Динамические ЭС 26
Классификация по типу ЭВМ 26
Классификация по степени интеграции с другими программами 26
Автономные ЭС 26
Гибридные ЭС 26
Инструментальные средства построения экспертных систем 27
Этапы разработки экспертных систем 27
Методы поиска решений в экспертных системах 29
Интеллектуальные пакеты прикладных программ 30
Достоинства ППП 32
Недостатки ППП 32
Нейронные сети 32
Заключение 34
Список используемой литературы: 35

Файлы: 1 файл

Информационные технологии, использующие системы поддержки принятия решений или системы искусственного интеллекта.doc

— 355.00 Кб (Скачать)

Язык  пользователя - это те действия, которые пользователь производит в отношении системы путем использования возможностей клавиатуры; электронных карандашей, пишущих на экране; джойстика; "мыши"; команд, подаваемых голосом, и т.п. Наиболее простой формой языка пользователя является создание форм входных и выходных документов. Получив входную форму (документ), пользователь заполняет его необходимыми данными и вводит в компьютер. Система поддержки принятия решений производит необходимый анализ и выдает результаты в виде выходного документа установленной формы.

Значительно возросла за последнее время популярность визуального интерфейса. С помощью манипулятора "мышь" пользователь выбирает представленные ему на экране в форме картинок объекты и команды, реализуя таким образом свои действия.

Управление  компьютером при помощи человеческого  голоса - самая простая и поэтому самая желанная форма языка пользователя. Она еще недостаточно разработана и поэтому мало популярна. Существующие разработки требуют от пользователя серьезных ограничений: определенного набора слов и выражений; специальной надстройки, учитывающей особенности голоса пользователя; управления в виде дискретных команд, а не в виде обычной гладкой речи. Технология этого подхода интенсивно совершенствуется, и в ближайшем будущем можно ожидать появления систем поддержки принятия решений, использующих речевой ввод информации.

Язык  сообщений - это то, что пользователь видит на экране дисплея (символы, графика, цвет), данные, полученные на принтере, звуковые выходные сигналы и т.п. Важным измерителем эффективности используемого интерфейса является выбранная форма диалога между пользователем и системой. В настоящее время наиболее распространены следующие формы диалога: запросно-ответный режим, командный режим, режим меню, режим заполнения пропусков в выражениях, предлагаемых компьютером.

Каждая  форма в зависимости от типа задачи, особенностей пользователя и принимаемого решения может иметь свои достоинства  и недостатки.

Долгое  время единственной реализацией  языка сообщений был отпечатанный или выведенный на экран дисплея  отчет или сообщение. Теперь появилась новая возможность представления выходных данных - машинная графика. Она дает возможность создавать на экране и бумаге цветные графические изображения в трехмерном виде. Использование машинной графики, значительно повышающее наглядность и интерпретируемость выходных данных, становится все более популярным в информационной технологии поддержки принятия решений.

За последние  несколько лет наметилось новое  направление, развивающее машинную графику, - мультипликация. Мультипликация оказывается особенно эффективной для интерпретации выходных данных систем поддержки принятия решений, связанных с моделированием физических систем и объектов.

Области применения

Телекоммуникации

Телекоммуникационные  компании используют СППР для подготовки и принятия комплекса решений, направленных на сохранение своих клиентов и минимизацию их оттока в другие компании. СППР позволяют компаниям более результативно проводить свои маркетинговые программы, вести более привлекательную тарификацию своих услуг.

Анализ  записей с характеристиками вызовов позволяет выявлять категории клиентов с похожими стереотипами поведения, с тем, чтобы дифференцировано подходить к привлечению клиентов той или иной категории.

Есть  категории клиентов, которые постоянно  меняют провайдеров, реагируя на те или иные рекламные компании. СППР позволяют выявить наиболее характерные признаки «стабильных» клиентов, т.е. клиентов, длительное время остающихся верными одной компании, давая возможность ориентировать свою маркетинговую политику на удержание именно этой категории клиентов.

Банковское  дело

СППР  используются для более качественного  мониторинга различных аспектов банковской деятельности, таких как  обслуживание кредитных карт, займов, инвестиций и так далее, что позволяет  значительно повысить эффективность работы.

Выявление случаев мошенничества, оценка риска  кредитования, прогнозирование изменений  клиентуры – области применения СППР и методов добычи данных. Классификация  клиентов, выделение групп клиентов со сходными потребностями позволяет  проводить целенаправленную маркетинговую политику, предоставляя более привлекательные наборы услуг той или иной категории клиентов.

Страхование

Набор применений СППР в страховом бизнесе  можно назвать классическим - это  выявление потенциальных случаев  мошенничества, анализ риска, классификация клиентов.

Обнаружение определенных стереотипов в заявлениях о выплате страхового возмещения, в случае больших сумм, позволяет  сократить число случаев мошенничества  в будущем.

Анализируя  характерные признаки случаев выплат по страховым обязательствам, страховые компании могут уменьшить свои потери. Полученные данные приведут, например, к пересмотру системы скидок для клиентов, подпадающих под выявленные признаки.

Классификация клиентов дает возможность выявить  наиболее выгодные категории клиентов, чтобы точнее ориентировать существующий набор услуг и вводить новые услуги.

Розничная торговля

Торговые  компании используют технологии СППР для решения таких задач, как  планирование закупок и хранения, анализ совместных покупок, поиск шаблонов поведения во времени.

Анализ  данных о количестве покупок и  наличии товара на складе в течение  некоторого периода времени позволяет  планировать закупку товаров, например, в ответ на сезонные колебания  спроса на товар.

Часто, покупая какой либо товар покупатель приобретает вместе с ним и другой товар. Выявление групп таких товаров позволяет, например, помещать их на соседних полках, с тем, чтобы повысить вероятность их совместной покупки.

Поиск шаблонов поведения во времени дает ответ на вопрос «Если сегодня покупатель приобрел один товар, то через какое время он купит другой товар?». Например, приобретая фотоаппарат, покупатель, вероятно, в ближайшем будущем станет приобретать пленку, пользоваться услугами по проявке и печати.

Целевые результаты

Результаты  выполнения проектов целевым образом  соответствуют предоставлению возможности  получения ответов на вопросы:

  • здоров ли бизнес?
  • кто мой лучший клиент?
  • какой мой лучший продукт или услуга?
  • какого поставщика мне выгодно выбрать и почему?
  • где мы типично не укладываемся в сроки и почему?
  • какова эффективность деятельности нашего персонала?
  • какая дочерняя компания внесла наибольший (наименьший) вклад в результат?
  • что показывает анализ фондоотдачи оборудования?
  • какой сценарий и подход выбрать при слиянии (реструктуризации) компаний?
  • и т.п.

 

Системы искусственного интеллекта

Согласно  определению Д.А. Поспелова, "Система  называется интеллектуальной, если в  ней реализованы следующие основные функции:

  • накапливать знания об окружающем систему мире, классифицировать и оценивать их с точки зрения прагматической полезности и непротиворечивости, инициировать процессы получения новых знаний, осуществлять соотнесение новых знаний с ранее хранимыми;
  • пополнять поступившие знания с помощью логического вывода, отражающего закономерности в окружающем систему мире в накопленных ею ранее знаниях, получать обобщенные знания на основе более частных знаний и логически планировать свою деятельность;
  • общаться с человеком на языке, максимально приближенном к естественному человеческому языку;
  • получать информацию от каналов, аналогичных тем, которые использует человек при восприятии окружающего мира;
  • уметь формировать для себя или по просьбе человека (пользователя) объяснение собственной деятельности;
  • оказывать пользователю помощь за счет тех знаний, которые хранятся в памяти, и тех логических средств рассуждений, которые присущи системе".

    Перечисленные функции можно назвать функциями  представления и обработки знаний, рассуждения и общения. Наряду с  обязательными компонентами, в зависимости от решаемых задач и области применения в конкретной системе эти функции могут быть реализованы в различной степени, что определяет индивидуальность архитектуры.

Различные подходы к построению систем искусственного интеллекта

Существуют  различные подходы к построению систем искусственного интеллекта. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас. Кроме того, поскольку по-настоящему полных систем искусственного интеллекта в настоящее время нет, то нельзя сказать, что какой-то подход является правильным, а какой-то ошибочным.

Для начала кратко рассмотрим логический подход. Почему он возник? Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных.

Основой для данного логического подхода  служит Булева алгебра. Каждый программист  знаком с нею и с логическими  операторами с тех пор, когда  он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система искусственного интеллекта, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.

Конечно можно сказать, что выразительности  алгебры высказываний не хватит для  полноценной реализации искусственного интеллекта, но стоит вспомнить, что  основой всех существующих ЭВМ является бит - ячейка памяти, которая может принимать значения только 0 и 1. Таким образом было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

Добиться  большей выразительности логическому  подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме  да/нет (1/0) еще и промежуточные  значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой алгебры.

Для большинства  логических методов характерна большая  трудоемкость, поскольку во время  поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.

Под структурным подходом мы подразумеваем здесь попытки построения искусственного интеллекта путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

Позднее возникли и другие модели, которые  в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

НС наиболее успешно применяются в задачах  распознавания образов, в том  числе сильно зашумленных, однако имеются  и примеры успешного применения их для построения собственно систем искусственного интеллекта, это уже ранее упоминавшийся ТАИР.

Для моделей, построенных по мотивам человеческого  мозга характерна не слишком большая  выразительность, легкое распараллеливание  алгоритмов, и связанная с этим высокая производительность параллельно  реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом - нейронные сети работают даже при условии неполной информации об окружающей среде, то есть как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".

Довольно  большое распространение получил  и эволюционный подход. При построении систем искусственного интеллекта по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

Информация о работе Информационные технологии, использующие системы поддержки принятия решений или системы искусственного интеллекта