История развития комбинаторики

Автор: Пользователь скрыл имя, 03 Ноября 2012 в 14:03, доклад

Краткое описание

С задачами, получившими название комбинаторных, оказывается, люди сталкивались в глубокой древности. Уже несколько тысячелетий назад в Древнем Китае увлеклись составлением магических квадратов, в которых заданные числа располагались так, что их сумма по всем горизонталям, вертикалям и главным диагоналям была одной и той же. В Древней Греции подсчитывали число различных комбинаций длинных и коротких слов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей особым образом разрезанного квадрата и т.д. Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д.

Файлы: 1 файл

1.docx

— 14.65 Кб (Скачать)

                             1.История развития комбинаторики

 С задачами, получившими название комбинаторных, оказывается, люди сталкивались в глубокой древности. Уже несколько тысячелетий назад в Древнем Китае увлеклись составлением магических квадратов, в которых заданные числа располагались так, что их сумма по всем горизонталям, вертикалям и главным диагоналям была одной и той же. В Древней Греции подсчитывали число различных комбинаций длинных и коротких слов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей особым образом разрезанного квадрата и т.д. Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д.

 Первым рассматривал комбинаторику как самостоятельную ветвь науки всемирно известный немецкий учёный Готфрид Вильгельм Лейбниц. В 1666 году Лейбниц опубликовал «Рассуждения о комбинаторном искусстве». В своём сочинении Лейбниц, вводя специальные символы, термины , находит все k -сочетания из n элементов, выводит свойства сочетаний, строит таблицы сочетаний, после чего рассуждает о приложениях комбинаторики к логике, арифметике, к проблемам стихосложения и др. Мечтой Лейбница, оставшейся неосуществлённой, оставалось построение общей комбинаторной теории.

 В XVIII веке к решению комбинаторных задач обращались выдающиеся математики. Замечательные достижения в области комбинаторики принадлежат Леонарду Эйлеру. Он рассматривал задачи о разбиении чисел, о циклических расстановках, о построении магических и латинских квадратов. В 1713 году было опубликовано сочинение Я. Бернулли, в котором с достаточной полнотой были изложены известные к тому времени комбинаторные факты. Комбинаторными задачами интересовались и математики, занимавшиеся составлением и разгадыванием шифров, изучением древних письменностей. Теперь комбинаторика находит приложения во многих областях науки: в биологии, где она применяется для изучения состава белков и ДНК, в химии, механике сложных сооружений и т.д. Комбинаторные задачи физики, химии, биологии, экономики и других наук, которые не поддавались ранее решению из-за трудоемкости вычислений, стали успешно решаться на ЭВМ. В результате этого комбинаторные методы исследования все глубже проникают во многие разделы науки и техники. В частности, с помощью ЭВМ решена проблема четырех красок: доказано, что любую карту можно раскрасить в четыре цвета так, чтобы никакие две страны, имеющие общую границу, не были окрашены в один и тот же цвет.


Информация о работе История развития комбинаторики