Лекции по "Пищевая химия"

Автор: Пользователь скрыл имя, 07 Октября 2013 в 14:45, курс лекций

Краткое описание

Тема: Пищевая химия, как дисциплина. Основные направления пищевой химии.
1 Предмет, содержание и основные направления дисциплины.
2 Понятие качества пищевых продуктов. Общие пищевые законоположения и инструкции.
3 Проблемы повышения качества пищевых продуктов.

Файлы: 1 файл

Лекции по пищевой химии.docx

— 237.21 Кб (Скачать)

где n – число аминокислот, шт;

б,э  – содержание аминокислоты в белке изучаемого продукта и эталонном белке, соответственно.

 

Удельный  вес незаменимых аминокислот  в общем количестве белков животного происхождения составляет 4352%. В растительных продуктах их присутствие составляет лишь 3245%. К тому же, усвояемость их значительно снижена из-за прочной связи белков с клетчаткой. Если принять усвояемость белков молока за 100%, то усвояемость белков мяса составит 90%, картофеля – 80%, пшеницы – 50%, белков некоторых овощей – 2530%.

Кроме того животные белки лучше  сбалансированы по аминокислотному  составу.

 

 

 

Лекция  №3

Тема: Физиологическое  значение белков и аминокислот

в питании  человека.

1 Важнейшие группы пептидов и их физиологическая роль.

2 Характеристика белков пищевого сырья.

3 Новые формы белковой пищи.

4 Функциональные свойства белков.

 

1 Важнейшие  группы пептидов и их физиологическая  роль.

 

Пептиды – это олигомеры, составленные из остатков аминокислот. Они имеют невысокую молекулярную массу (содержание остатков аминокислот колеблется от нескольких штук до нескольких сотен).

В организме  пептиды образуются либо в процессе синтеза из аминокислот, либо при  гидролизе (расщеплении) белковых молекул.

На  сегодня установлены физиологическое  значение и функциональная роль наиболее распространенных групп пептидов, от которых зависят здоровье человека, органолептические и санитарно-гигиенические свойства пищевых продуктов.

Пептиды-буферы. В мышцах животных и человека обнаружены дипептиды, выполняющие буферные функции, то есть поддерживающие постоянный уровень рН.

Пептиды-гормоны. Гормоны – вещества органической природы, вырабатываемые клетками желез, регулируют деятельность отдельных органов, желез и организма в целом: сокращение гладкой мускулатуры организма и секреции молока молочными железами, регуляция деятельности щитовидной железы, активности роста организма, образования пигментов, обуславливающих цвет глаз, кожи, волос.

Нейропептиды. Это две группы пептидов (эндорфины и энкефалины), содержащихся в мозге человека и животных. Они определяют реакции поведения (боязнь, страх), влияют на процессы запоминания, обучения, регулируют сон, снимают боль.

Вазоактивные пептиды синтезируются из белков пищи в результате, они оказывают влияние на тонус сосудов.

Пептидные токсины представляют собой группу токсинов, вырабатываемых мироорганизмами, ядовитыми грибами, пчёлами, змеями, морскими моллюсками и скорпионами. Для пищевой промышленности они нежелательны. Наибольшую опасность представляют токсины микроорганизмов (золотистый стафилококк, бактерии ботулизма, сальмонеллы), в том числе грибков, которые развиваются в сырье, полуфабрикатах и готовых пищевых продуктах.

Пептиды-антибиотики. Представители данной группы пептидов бактериального или грибкового происхождения используется в борьбе с инфекционными заболеваниями, вызываемыми стрептококками, пневмококками, стафилококками и др. микроорганизмами.

Вкусовые  пептиды – прежде всего это соединения со сладким или горьким вкусом. Пептиды горького вкуса образуются в молодых ещё незрелых ферментативных сырах. Пептиды со сладким вкусом (аспартам) используются в качестве заменителя сахара.

Протекторные  пептиды выполняют защитные функции, прежде всего – антиокислительные.

 

2 Характеристика  белков пищевого сырья.

Пептиды, имеющие молекулярную массу более 5000 Да, и выполняющие ту или иную биологическую функцию, называются белками.

Функциональные  свойства белков зависят от последовательности аминокислот в полипептидной цепи (так называемая первичная структура), а также от пространственной структуры полипептидной цепи (зависят от вторичной, третичной и четвертичной структур).

Разные  продукты питания отличаются качественным и количественным содержанием белков.

В злаковых культурах содержание общего белка составляет 10÷20%. Анализируя аминокислотный состав суммарных белков различных злаковых культур следует отметить, что все они, за исключением овса, бедны лизином (2,2÷3,8%). Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина и цистеина (1,6÷1,7 мг/100 гбелка). Наиболее сбалансированными по аминокислотному составу являются овес, рожь и рис.

В бобовых культурах (соя, горох, фасоль, вика) содержание общего белка высоко и составляет 20÷40%. Наиболее широкое применение получила соя. Её скор близок к единице по пяти аминокислотам, но при этом в сое содержится недостаточно триптофана, фенилаланина и тирозина и очень низкое содержание метионина.

В масличных культурах (подсолнечник, хлопчатник, рапс, лён, клещевина, кариандр) содержание общего белка составляет 14÷37%. При этом аминокислотный скор белков всех масличных (в меньшей степени хлопчатника) достаточно высок даже для лимитирующих кислот. Этот факт определяет целесообразность получения из масличного сырья концентрированных форм белка и создание на их основе новых форм белковой пищи.

Относительно  низкое содержание азотистых веществ в картофеле (около 2%), овощах (1÷2%) и плодах (0,4÷1,0%) указывают на незначительную роль этих видов пищевого растительного сырья в обеспечении продуктов питания белком.

Мясо, молоко и получаемые из них продукты содержат необходимые организму белки, которые благоприятно сбалансированы и хорошо усваиваются (при этом показатель сбалансированности и усвоения у молока выше, чем у мяса). Содержание белка в мясных продуктах колеблется от 11 до 22%. Содержание белков в молоке колеблется от 2,9 до 3,5%.

 

 

3 Новые  формы белковой пищи.

Сегодня в условиях постоянно растущего  общества и ограниченности ресурсов перед человеком стоит необходимость  создания современных продуктов питания, обладающих функциональными свойствами и отвечающих требованиям науки о здоровом питании.

Новые формы белковой пищи – это продуты  питания, получаемые на основе различных  белковых фракций продовольственного сырья с применением научно обоснованных способов переработки, и имеющие  определённый химический состав, структуру и свойства.

Широкое признание получили различные растительные белковые источники: зернобобовые, хлебные и крупяные и побочные продукты их переработки, масличные; овощи и бахчёвые, вегетативная масса растений.

При этом для производства белковых продуктов преимущественно используются соя и пшеница.

Продукты  переработки соевых белков подразделяются на три группы, отличающиеся по содержанию белка: муку и крупу получают путём помола в них содержится 40÷45% белка от общей массы продукта; соевые концентраты получают путём удаления водорастворимых компонентов, они содержат 65÷70% белка; соевые изоляты получают экстракцией белка, они содержат не менее 90% белка.

На  основе сои получают текстурированные белковые продукты, в которых соевые белки используют, например, вместо белков мяса. Гидролизованные соевые белки называются модифицированными. Их используют как функциональные и вкусовые добавки к пище.

Сегодня на основе сои также выпускают соевое молоко, соевый соус, тофу (соевый творог) и др. продукты питания.

Из  пшеницы или пшеничной муки методом  водной экстракции получают сухую пшеничную  клейковину с содержанием белка 75÷80%.

В то же время наличие лимитирующих аминокислот в растительных белках определяет их неполноценность. Выходом  здесь является совместное использование  различных белков, что обеспечивает эффект взаимного обогащения. Если при этом достигают повышения  аминокислотного скора каждой незаменимой лимитирующей аминокислоты по сравнению отдельным использованием исходных белков, то говорят об эффекте простого обогащения, если после смешивания аминокислотный скор каждой аминокислоты превышает 1,0, то – это эффект истинного обогащения. Использование подобных сбалансированных белковых комплексов обеспечивает повышение усвояемости растительных белков до 80÷100%.

 

 

4 Функциональные  свойства белков.

Белки и белковые концентраты находят широкое применение в производстве пищевых продуктов благодаря присущим им уникальным функциональным свойствам, под которыми понимают физико-химические характеристики, определяющие поведение белков при переработке в пищевые продукты и обеспечивающие определенную структуру, технологические и потребительские свойства готового продукта.

К наиболее важным функциональным свойствам белков относятся растворимость, водосвязывающая  и жиросвязывающая способность, способность стабилизировать дисперсные системы (эмульсии, пены, суспензии), образовывать гели.

Растворимость – это первичный показатель оценки функциональных свойств белков, характеризуется количеством белка, переходящего в раствор. Растворимость в наибольшей степени зависит от присутствия нековалентных взаимодействий: гидрофобных, электростатических и водородных связей. Белки с высокой гидрофобностью хорошо взаимодействуют с липидами, с высокой гидрофильностью хорошо взаимодействуют с водой. Поскольку белки одного типа имеют одинаковый по знаку заряд, то они отталкиваются, что способствует их растворимости. Соответственно в изоэлектрическом состоянии, когда суммарный заряд белковой молекулы равен нулю, а степень диссоциации минимальна, белок обладает низкой растворимостью, даже может скоагулировать.

Водосвязывающая способность характеризуется адсорбцией воды при участии гидрофильных остатков аминокислот, жиросвязывающая – адсорбцией жира за счёт гидрофобных остатков. В среднем на 1 г белка может связывать и удерживать на своей поверхности 2÷4 г воды или жира.

Жироэмульгирующая и пенообразующая способность белков широко используются при получении жировых эмульсий и пен, то есть гетерогенных систем вода-масло, вода-газ. Благодаря наличию в белковых молекулах гидрофильных и гидрофобных зон они взаимодействуют не только с водой, но и с маслом и воздухом и, выступая в качестве оболочки на границе раздела двух сред, способствуют их распределению друг в друге, то есть созданию устойчивых систем.

Гелеобразующие свойства белков характеризуются способностью их коллоидного раствора из свободного диспергированного состояния переходить в связанодисперсное с образованием систем, обладающих свойствами твёрдых тел.

Вязко-эластично-упругие свойства белков зависят от их природы (глобулярные или фибрилярные), а также наличия функциональных групп, которыми белковые молекулы связываются между собой или с растворителем.

 

 

Лекция  №4

Тема: Физиологическое  значение углеводов в питании  человека.

1 Общая характеристика углеводов.

2 Физиологическое значение углеводов.

3 Функции моносахаридов и олигосахаридов  в пищевых продуктах.

4 Функции полисахаридов в пищевых  продуктах.

 

1 Общая  характеристика углеводов.

Углеводы  – это класс соединений, образованных углеродом, водородом и кислородом, с наиболее часто встречающейся  химической формулой Cn(H2O)m. По своей природе углеводы – это многоатомные спирты с наличием альдегидной (альдозы) или кетонной группы (кетозы).

Углеводы  составляют три четверти биологического мира и примерно 60–80% калорийности пищевого рациона.

Согласно  принятой в настоящее время классификации  углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.

Моносахариды  обычно содержат от 3 до 9 атомов углерода, причем наиболее распространены пентозы  и гексозы. Моносахариды присутствуют, как в развёрнутой, так и в циклической формах.

Среди моносахаридов широко известны глюкоза, фруктоза, галактоза.

Глюкоза (виноградный сахар) содержится в ягодах, фруктах и меде. Из молекул глюкозы построены крахмал, гликоген, мальтоза; глюкоза является составной частью сахарозы, лактозы.

Фруктоза (плодовый сахар) содержится в меде, фруктах; является составной частью сахарозы.

Галактоза - составная часть молочного сахара (лактозы), которая содержится в молоке млекопитающих, растительных тканях, семенах.

Полисахариды – это основной источник углеводов в пище человека и животных. Они подразделяются на полисахариды первого порядка (олигосахариды) и второго порядка (полиозы).

Олигосахариды содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. Наиболее распространенны дисахариды сахароза (обычный пищевой сахар) и лактоза содержится только в молоке и состоит из гaлактозы и глюкозы.

Полисахариды  второго порядка можно разделить на гомополисахариды (состоят из моносахаридных единиц только одного типа) и гетерополисахариды (для них характерно наличие двух или более типов мономерных звеньев).

Крахмал состоит из двух гомополисахаридов: линейного – амилозы (задействованы связи 1-4) и разветвленного – амилопектина (задействованы связи 1-6). Крахмал является главной составной частью пищи человека, содержится в хлебе, картофеле, крупах, овощах.

Гликоген – полисахарид, широко распространенный в тканях животных, близкий по своему строению к амилопектину.

Целлюлоза (или клетчатка) является одним из наиболее распространенных растительных гомополисахаридов. Она выполняет роль опорного материала растений, из нее строится жесткий скелет стеблей, листьев.

Слизи (содержатся в большом количестве в льняных семенах и в зерне ржи) и гумми (камеди – выделяемые в виде наплывов вишневыми, сливовыми или миндальными деревьями в местах повреждения ветвей и стволов).

Пектиновые  вещества, содержащиеся в растительных соках и плодах, представляют собой гетерополисахариды. Пектины составляют основу фруктовых гелей.

Информация о работе Лекции по "Пищевая химия"