Акриловая кислота и ее производные

Автор: Пользователь скрыл имя, 22 Февраля 2012 в 07:30, курсовая работа

Краткое описание

Основная продукция, производимая из акриловой кислоты, – акриловые эфиры. На их долю приходится 55% мирового спроса. Сырая (неочищенная) акриловая кислота используется компаниями для собственных нужд и практически в полном объеме идет на производство акрилатов (наиболее важные из них: бутил-, метил-, этил- и 2-этил-гексилакрилат), а также других дериватов, используемых в производстве красок, бумаги, текстиля, адгезивов, специальных покрытий и чернил. Сложный эфир с самым большим объемом производства - бутилакрилат, затем этилакрилат.

Оглавление

Введение
1. Акриловые мономеры
1.1 Акриловая кислота. Химические свойства. Получение.
1.2 Метакриловая кислота. Химические свойства. Получение.
2. Полиакрилаты - полимеры производных акриловой и метакриловой кислот
2.1 Характеристика и получение полимеров
2.2 Свойства и применение производных акриловой и метакриловой кислот
Заключение
Список использованной литературы

Файлы: 1 файл

Копия Полиакрилаты.doc

— 120.50 Кб (Скачать)


 

 

 

 

 

 

 

 

ЛИТЕРАТУРНЫЙ ОБЗОР НА ТЕМУ :

АКРИЛОВАЯ КИСЛОТА И ЕЕ ПРОИЗВОДНЫЕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

Введение

1.         Акриловые мономеры

1.1     Акриловая кислота. Химические свойства. Получение.

1.2     Метакриловая кислота. Химические свойства. Получение.

2. Полиакрилаты - полимеры производных акриловой и метакриловой кислот

2.1 Характеристика и получение полимеров

2.2 Свойства и применение производных акриловой и метакриловой кислот

Заключение

Список использованной литературы

 

 


Основная продукция, производимая из акриловой кислоты, – акриловые эфиры. На их долю приходится 55% мирового спроса. Сырая (неочищенная) акриловая кислота используется компаниями для собственных нужд и практически в полном объеме идет на производство акрилатов (наиболее важные из них: бутил-, метил-, этил- и 2-этил-гексилакрилат), а также других дериватов, используемых в производстве красок, бумаги, текстиля, адгезивов, специальных покрытий и чернил. Сложный эфир с самым большим объемом производства - бутилакрилат, затем этилакрилат.

Ледяная (безводная) акриловая кислота используется в производстве суперабсорбирующих полимеров (SAP), на долю которых приходится около 32% мирового спроса на акриловую кислоту, а также при изготовлении полимеров, применяемых в моющих средствах. Меньшие объемы кислоты потребляются в производстве полиакрилатов. Акриловая кислота и ее производные – это основа для высокоэффективного производства лакокрасочной продукции, нетканых материалов, высококачественной отделки кожи, беспигментной печати в текстильной промышленности, производства флокулянтов для очистки воды, а также это основа для суперабсорбентов, которые используются в производстве санитарно-гигиенических средств, полимеров для поглощения воды из почвы и отдачи ее растениям в производстве сельхозпродуктов.

1.                  Акриловые мономеры

Впервые акриловая (пропеновая, этиленкарбоновая) кислота СН2=СН-СООН была получена Редтенбахером в 1843 г., который окислил акролеин оксидом серебра, затем А.М. Бутлеровым в 1860 г. путем реакции иодоформа с этилатом натрия. В 1862 г. эту кислоту синтезировал Ф.Ф. Бейльштейн дегидроиодированием b-иодпропионовой и дегидратированием b-гидроксипропионовой кислот. Полимеризация акриловой кислоты была описана лишь 10 лет спустя Линнеманом.

Гомолог акриловой кислоты – a-метилакриловая кислота, названная позже Ремом метакриловой кислотой, – была получена в 1865 г. Э. Франкландом и Дюппа омылением эфира a-гидроксиизомасляной кислоты. Получение метакриловой кислоты из ацетонциангидрина было описано в 1932 г.

Акриловая и метакриловая кислоты, их сложные эфиры, нитрилы и амиды являются ценными мономерами, полимеризацией которых получают полиакриловую кислоту, полиакрилаты, эфиры: бутил-, трет-бутил-, изобутил-, метил- и этилакрилаты, а также полиакрилонитрил. Полимеризацией некоторых эфиров акриловой кислоты или сополимеризацией с виниловыми мономерами (2-хлорэтилвиниловый эфир, винилхлорацетат и др.) получают акрилатные (акриловые) каучуки.

Акрилатные каучуки тепло-, озоно- и кислородостойки, устойчивы к действию УФ-излучения, характеризуются низкой газопроницаемостью.

Полиакриловая кислота – распространенный гидрофильный загуститель для разнообразных водных растворов промышленного применения. акриловый мономерПолиакрилаты и полиметакрилаты широко применяются при производстве органического стекла, синтетических волокон, акриловых смол и различных эмульсий, используемых в целлюлозно-бумажной, лакокрасочной, текстильной, кожевенной и других отраслях промышленности. Наиболее широкое распространение получил полиметилметакрилат как основа прозрачных органических стекол. Увеличение производства метакриловых мономеров долгое время тормозилось высокой стоимостью и трудоемкостью применяемых методов их получения. И только в последние 10-15 лет, в связи с необходимостью утилизации дешевой синильной кислоты, получаемой в значительных количествах в качестве побочного продукта в производстве акрилонитрила окислительным аммонолизом пропилена, мощности их производств стали значительно возрастать.

Сополимеризацией акрилатов с другими мономерами значительно улучшаются свойства полимерных материалов и расширяются области их применения. Так, сополимеры акрилатов с небольшим количеством акрилонитрила или винилхлорида улучшают стойкость полимерных материалов к большинству растворителей, сополимеры с акриловой кислотой повышают полярность акрилатов и тем самым улучшают адгезию и способность водных дисперсий к загустеванию, сополимеры с амидами, например с N-метилоламидом, с меламином, аминами, эпоксисоединениями, хлоргидрином и другими мономерами, содержащими реакционноспособные группы, являются основой клеев и лаков холодной и горячей сушки.

Масштабы производства собственно акриловой кислоты гораздо меньше масштабов производства ее производных.

 

1.1 Акриловая кислота. Химические свойства. Получение

Акриловая (пропеновая, этиленкарбоновая) кислота СН2=СН-СООН – бесцветная жидкость с резким запахом; т. пл. 285-286,5 К , т. кип. 413,9-414,6 К, d420 = 1,0511. Растворяется в воде, спирте, СНС13, бензоле. При хранении полимеризуется.

Акриловую кислоту и ее соли применяют для изготовления водорастворимых полимеров и сополимеров, которые используют в качестве аппретур, связующих, диспергаторов. Примерно половина выпускаемых эфиров акриловой кислоты – акрилатов – расходуется на производство красок для внутренних и наружных покрытий. Покрытия отличаются стойкостью к истиранию, быстро сохнут и не желтеют. Лаки на основе акрилатов применяют для окраски бытовых приборов и кузовов автомобилей методом распыления. Значительную часть производимых акрилатов использууют в текстильной промышленности. В бумажной промышленности полиакрилаты применяют для мелования бумаги и картона, а также для получения покрытий. Полимеры этил-, бутил- и 2-этилгексилакрилат часто в комбинации со стиролом, винилацетатом или виниловыми эфирами являются составными частями многих клеев. Сополимеры этилакрилата и этилена представляют собой ценные эластомеры.

В промышленности реализуются следующие способы получения акриловой кислоты:

- гидролиз этиленциангидрина;

- гидролиз акрилонитрила;

- гидрокарбоксилирование ацетилена;

- окисление пропилена в паровой фазе с промежуточным образованием акролеина;

1. Гидролиз этиленциангидрина

Один из вариантов получения акриловой кислоты базируется на взаимодействии этиленоксида с циангидрином с образованием этиленциангидрина:

 

CH2—CH2 + HCN HOCH2 CH2CN.

 

Последующий гидролиз этиленциангидрина до акриловой кислоты осуществляют в среде серной кислоты в соответствии с реакциями:

 

H2SO4

HOCH2CH2CN + 2H2O HOCH2CH2COOH + NH4HSO4

CH2=CHCOOH + H2O.

Общий выход акриловой кислоты не превышает 60-70%.

Этот метод разработан фирмой «Юнион Карбайд». Однако он не получил промышленного развития: последняя действовавшая установка по этому методу была остановлена в 1971 г.

2.                  Гидролиз акрилонитрила

Гидролиз нитрилов является одним из наиболее распространенных способов синтеза карбоновых кислот. Процесс катализируется кислотами или щелочами и протекает через промежуточную стадию образования амидов:

 

CN + H2O RCONH2

CONH2 + H2O RCOOH + NH3

 

Реакцию осуществляют в водной среде при тепературе 323-353 К. Соотношение скоростей обеих реакций зависит от строения нитрилов, природы применяемого катализатора и условий проведения гидролиза. Если k1>>k2, то, несмотря на избыток воды, реакцию можно остановить на стадии образования амида. При гидролизе серной кислотой соотношение k1:k2 зависит от концентрации кислоты. Например, при гидролизе пропионитрила серной кислотой получают только пропионовую кислоту (k1:k2>100). С увеличением концентрации кислоты скорости обеих реакций становятся соизмеримыми. При обработке многих нитрилов 50%-ной и более разбавленной серной кислотой, как правило, получают карбоновые кислоты. При взаимодействии нитрилов с более концентрированными кислотами реакция часто прекращается на стадии образования амида.

Таким образом, применение высококонцентрированных минеральных кислот способствует получению амида, а в области низких концентраций кислот (k2>>k1) образуются карбоновые кислоты.

При получении акриловой кислоты сернокислотным гидролизом процесс проводят в две стадии: сначала синтезируют сульфат акриламида, а затем сульфат акриламида омыляют с выделением акриловой кислоты.

После термообработки смеси, полученной гидролизом сульфата акриламида водой, акриловую кислоту отгоняют при пониженном давлении. Однако при этом вследствие полимеризации кислоты в паровой фазе ее значительное количество теряется. Выделение кислоты из смеси после гидролиза сульфата акриламида может быть осуществлено отгонкой вместе с органическим растворителем, добавленным в гидролизованную реакционную смесь. При этом смесь паров поступает в конденсатор, в который подают дополнительное количество воды. Образующаяся смесь разделяется на слой органического растворителя и слой водного раствора кислоты, концентрация которого регулируется количеством добавленной воды. В качестве растворителей могут использоваться о-, м-, п-крезолы, нафтол и масляные фракции керосина.

Побочные реакции при гидролизе акрилонитрила. При сернокислотном гидролизе акрилонитрила, наряду с основной реакцией образования сульфата акриламида, протекают пробочные реакции, приводящие к образованию сульфата амида пропионовой кислоты, акриловой кислоты и др. Этерификацию проводят в реакторе с мешалкой, изготовленном из антикоррозионного материала – стекла, керамики, эмалированных материалов, политетрафторэтилена. На стадии этерификации в качестве побочных продуктов образуются алкили и алкоксиалкилпропионаты, диалкиловый эфир, сульфат аммония. На стадии этерификации сульфата акриламида в кислой среде возможна реакция дегидратации спирта с образованием простого эфира, который при контакте с воздухом легко превращается в пероксидные соединения, являющиеся активными инициаторами полимеризации.

Ингибиторы полимеризации акриловой кислоты. При очистке акриловой кислоты ректификацией она полимеризуется, и это происходит значительно быстрее в газовой фазе, чем в жидкой, так как обычно применяемые при синтезе ингибиторы полимеризации – гидрохинон, метилгидрохинон, фенотиазин, метиленовый голубой и другие – в газовой фазе содержатся в меньшем количестве, чем необходимо для стабилизации кислоты.

Образующийся полимер акриловой кислоты, не растворимый в кислоте и других растворителях, быстро заполняет дистилляционную колонну, и непрерывный процесс становится невозможным.

Для предотвращения полимеризации кислоты при дистилляции добавляют различные ингибиторы полимеризации, например гидрохинон, фенол или его производные и кислород, дифениламин или его производные.

В качестве ингибитора полимеризации при перегонке акриловой кислоты может быть использован и хлорид аммония, 1%-ный раствор которого подается в верхнюю часть дистилляционной колонны.

Во избежание образования полимера на поверхности аппаратов из стали при перегонке акриловой кислоты их покрывают политетрафторэтиленом, который наносят на поверхность испарителя в виде пленки.

 

3.      Гидрокарбоксилирование ацетилена

 

Акриловую кислоту или ее эфиры можно получать взаимодействием ацетилена с тетракарбонилом никеля (источник оксида углерода) в присутствии воды или другого донора протонов (спирты, меркаптаны, амины, органические кислоты):

 

4СН СН + 4Н2О + Ni(СО)4 + 2НС1 4СН2=СН-СООН + NiС12 + Н2

 

Если вместо воды использовать одноатомный спирт, образуется эфир акриловой кислоты:

 

4С2Н2 + Ni(СО)4 + 4RОН + 2НС1 4СН2=СН-СООR + NiС12 + Н2.

Реакцию осуществляют при температуре 313 К, атмосферном давлении и соотношении ацетилен:СО, равном 1:1, в присутствии в качестве катализатора тетракарбонила никеля.

Недостатком этого способа является использование взрывоопасного ацетилена.

4.      Парофазное окисление пропилена

Процесс парофазного окисления пропилена является основным промышленным способом получения акриловой кислоты. Получение акриловой кислоты окислением пропилена в газовой фазе через промежуточное образование акролеина реализуется в две стадии:

 

CH2=CHCH3 + O2 CH2=CHCHO + H2O DH298 = -340 кДж/моль,

CH2=CHCHO + 0,5O2 CH2=CHCOOH DH298 = -250 кДж/моль

 

На первой стадии проводят окисление пропилена, а на второй – окисление акролеина.

Информация о работе Акриловая кислота и ее производные