Проект алмазной обогатительной фабрики

Автор: Пользователь скрыл имя, 06 Января 2011 в 12:01, дипломная работа

Краткое описание

Алмаз («Адамас» - греч.) - твердый, несокрушимый, непреодолимый - один из самых необыкновенных и интересных материалов известной нам неорганической природы. Наиболее красивый из драгоценных камней и наиболее твердый из всех минералов, он широко распространяется в металлообрабатывающей промышленности, а некоторые разновидности его нашли применение в современной полупроводниковой технике. Кроме того, алмаз может служить ценнейшим средством наблюдения физико-химических процессов, происходивших некогда в недрах земной коры и недоступных для непосредственного изучения: благодаря устойчивой кристаллической решетке он дошел до поверхности несет информацию об этих процессах в почти неизмененном виде.

Файлы: 10 файлов

введен.doc

— 83.00 Кб (Открыть, Скачать)

Глава 1. Геология месторождения.doc

— 95.00 Кб (Открыть, Скачать)

Глава 2. Вещественный состав.doc

— 98.00 Кб (Открыть, Скачать)

Глава 3. Тех часть.doc

— 422.00 Кб (Открыть, Скачать)

Глава 4. Автоматизация (2).doc

— 127.50 Кб (Скачать)

     Состав  и количество датчиков должны обеспечивать максимально полный контроль материальных потоков и состояния технологического оборудования.

     Везде, где это возможно, предусматривается  бесконтактный способ измерения.

     Для измерения уровней предусматриваются  радарные или ультазвуковые датчики уровня.

     Для измерения расхода воды предусматриваются  электромагнитные расходомеры, обеспечивающие более высокую эксплуатационную надежность и точность измерения.

     Подключение существующих датчиков и устройств  с цифровым интерфейсом предусматривается  по каналу RS –485 или по токовой петле.

     Питание датчиков осуществляется от источников питания постоянного тока на нгапряжении 24В.

     Использование сухих контактов датчиков типа БКС, индуктивных, ультразвуковых и т.д. предусматривается только в цепях 24В постоянного тока.

     Для измерения давления ипользуются  датчики Метран-49, которые предназначены для работы в системах автоматического контроля, регулирования, управления технологическими процессами и обеспечивают непрерывное преобразование значения измеряемого параметра в унифицированный токовый выходной сигнал дистанционной передачи. В датчиках давления "Метран-49" за счет реализации схемы трехмембранного приемника давления достигнуто сочетание высокой точности и стабильности измерений с высокой коррозионной стойкостью.

     Для измерения уровня используются ультразвуковые датчики фирмы VEGA (Германия) т.к. они обеспечивают максимальную точность измерения бесконтактным способом. А также имеют:

  1. специальное, коррозионностойкое исполнение.
  2. Преобразователь звука из UP с мембраной из высококачественной стали (1.4571)
  3. Интегрированный температурный датчик для корректировки времени распространения звука
  4. Точность измерения ±10 мм.

     Рабочая температура  -40...80°C

     Исполнительные  механизмы. Для управления материальными потоками предусматривается  использование регулирующих шаровых клапанов (вода),  регулирующих дисковых затворов (воздух), регулирующих шиберных задвижек (руда, пульпа) с электрическими исполнительными механизмами, обеспечивающих более высокую эксплуатационную надежность и экономичность по сравнению с пневматическими. Электрические исполнительные механизмы предусматриваются с аналоговым управляющим сигналом. Для регулирующих шиберных задвижек на руде и  пульпе возможно применение исполнительных механизмов с пневматическим приводом.

     Для управления скоростью пластинчатых питателей, насосов перекачки хвостов  и оборотной воды предусматриваются  регулируемые преобразователи частоты.

     Промышленные  компьютеры (контроллеры). На технологическом уровне управления предусматривается применение двух типов управляющих вычислительных комплексов (УВК) – индивидуальных и групповых.

     Индивидуальные  УВК предусматриваются в качестве замены аппаратных шкафов управления отдельными крупными и ответственными агрегатами (мельницы, отсадочные машины). Поскольку такие УВК осуществляют реализацию основных, базовых функций управления агрегатом (пуск, останов, контроль работы, поддержание основных режимов), то и требования к надёжности их функционирования наиболее высокие. Индивидуальные УВК создаются на основе промышленных  микропроцессорных контроллеров (МПК).

     Групповые УВК осуществляют управление группами агрегатов и реализуют более  сложные (логические, связанные, оптимизирующие) функции управления, функции представления и хранения информации, функции связи и диагностики. Групповые УВК создаются на основе программируемых логических контроллеров или промышленных персональных компьютеров (ППК).

     При выборе УВК целесообразно руководствоваться  следующими соображениями: -  УВК  должен быть РС-совместимым (IBM PC-based), т.е. совместимым с персональными компьютерами. РС-совместимость обеспечивает единую для всей системы аппаратную и программную базу средств вычислительной техники, что, в свою очередь, облегчает их эксплуатацию. Кроме того, РС-совместимые УВК значительно дешевле любых других УВК, не уступая им в надёжности, и имеют широкую номенклатуру технических и программных средств;

  • УВК предпочтительней использовать с системной шиной типа PCI-ISA. УВК на базе этой системной шины, по сравнению с УВК на базе других системных шин (Compact PCI, VME, STD-32 и др.), на сегодняшний день имеют более широкий выбор средств ввода-вывода сигналов, достаточно надежны и значительно дешевле.

     Электропитание. Электропитание всего оборудования системы (вычислительная техника, датчики, исполнительные механизмы и др.) должно быть организовано от отдельного фидера на котором не должно быть силовых энергопотребителей. Для всех устройств должны быть предусмотрены  групповые или индивидуальные источники бесперебойного электропитания. 

   4.5 Автоматизация и контроль процесса флотации 

   Совершенствование технологических процессов обогащения и создание эффективных флотомашин невозможны без решения вопросов автоматизации, так как достижение наилучших технико – экономических  показателей, закладываемых при разработке комплекса «технология – оборудование», невозможно лишь при условии, что данный комплекс оснащен средствами автоматического контроля и управления.

   Основные  направления автоматизации флотомашин имеют целый ряд специфических  особенностей, определяемых дисперсным составом газовой фазы по высоте машины; раздельным регулированием расхода воздуха в диспергаторе, высоты пенного слоя и аэродинамических параметров в камере; положением загрузочного устройства на границе раздела пенного слоя и пульповоздушной среды; плотностью пульповоздушной среды; регулированием без остановки машины высоты камеры и энергетических воздействий (электрических, магнитных полей и др.) на обогащаемый материал, а также раздельной подачей реагентов в камеру с учетом степени флотируемости твердых частиц.

   Система автоматического регулирования  расхода флотационных машин, подаваемого  в устройство для разгрузки камерного  продукта, в зависимости от расхода  воздуха происходит следующим образом. Исходная пульпа, обработанная реагентами, поступает в загрузочное устройство, которое равномерно распределяет пульпу по всему сечению камеры машины. Воздух, подаваемый в камеру через диспергаторы, образует пульповоздушную смесь. В слуае необходимости изменения степени аэрации пульпы регулируют расход подаваемого в диспергаторы воздуха, который фиксируется расходомером, и сигнал поступает на регулятор расхода воздуха, подаваемого в устройство разгрузки камерного продукта через диспергаторы. Регулятор поддерживает соотношение расхода воздуха, подаваемого в камеру машины и в устройство для разгрузки камерного продукта. Степень аэрации пульпы обуславливает изменение высоты пенного слоя и соответственно соотношений высот зон очистки и минерализации.

   Система регулирования соотношения высот  зон минерализации и очистки работает следующим образом. При перемещении диспергаторов приводным устройством изменяется соотношение высоты зон очистки и минерализации. Сигнал, пропорциональный перемещению диспергаторов по высоте, с датчика перемещения поступает на вход функционального преобразователя. Выходной сигнал с него подается на вход приводного устройства, которое по направляющим перемещает загрузочное устройство. Система автоматического регулирования обеспечивает заданное соотношение высот зоны минерализации и зоны очистки с учетом сигнала от регулятора.

   При изменении гранулометрического  состава исходной пульпы, плотности, степени аэрации и других параметров процесса возникает необходимость  оперативного регулирования высоты камеры машины /15/. 

   Для управления процессом флотационного процесса алмазосодержащих кимберлитов разработаны и внедрены следующие вопросы:

   - высокоточная система автоматического  регулирования подачи пенообразователя  в области низких его расходов, система автоматического регулирования уровня пульпы в камере флотомашины с регулированием расхода оборотной воды в зависимости от величины выгрузки камерного продукта, система и устройство для автоматического регулирования выгрузки хвостов;

   -  работа системы автоматического  регулирования подачи пенообразователя основана на достаточно тесной зависимости между плотностью аэрированной пульпы и концентрацией пенообразователя в области низких его расходов при стабилизированном расходе воздуха на аэрацию пульпы и её жидкой фазы.

   Разработка  и внедрение указанных средств контроля и регулирования позволили достичь стабильно высоких показателей при флотационном обогащении алмазосодержащего сырья, а также повысить культуру производства и практически исключить ручной труд при управлении флотационным процессом.

   В настоящее время процесс флотации кимберлитов достаточно изучен отечественными и зарубежными исследованиями и  продолжает изучаться и интенсифицироваться  в различных направлениях, основными  из которых являются усовершенствование существующих технологических схем обогащения, изменение реагентных режимов и конструирование нового обогатительного оборудования. Построение систем автоматического управления флотационным оборудованием требует тщательного изучения сложной взаимосвязи  факторов процесса с целью создания его математического описания и алгоритмов управления, правильного выбора критериев оценки эффективности работ флотации /1, 5, 3/.

   К входными параметрами являются:

   α – содержание кристаллов алмаза в руде; φ – флотируемость (окисленность, шламистость, фазовый состав руды и прочие характеристики); А или γ – производительность флотационной машины; λ – гранулометрический состав пульпы; δ – плотность пульпы; μiконцентрация реагентов в пульпе; h1 – уровень пульпы в камере; h2 – уровень пены в камере.

       К выходным параметрам относятся:

      υ – содержание кристаллов алмаза в хвостах; β – содержание кристаллов алмаза в концентрате; γβ – выход концентрата; γνвыход хвостов.

     В процессе роботы вышеперечисленные  параметры изменяются и представляют собой в большинстве случаев стационарные случайные функции. Входные параметры могут изменяться весьма значительно. В связи с этим выходные параметры при ручном управлении изменяются также очень сильно.

Глава 5. Специальная часть.doc

— 86.00 Кб (Открыть, Скачать)

Глава 6. Экономика.doc

— 117.00 Кб (Открыть, Скачать)

Глава 7. Охрана труда и окруж. среды.doc

— 103.50 Кб (Открыть, Скачать)

Заключение.doc

— 32.50 Кб (Открыть, Скачать)

литература.doc

— 48.00 Кб (Открыть, Скачать)

Информация о работе Проект алмазной обогатительной фабрики