Автор: Пользователь скрыл имя, 04 Декабря 2010 в 13:42, реферат
Обычная грязевулканическая деятельность четко распадается на два периода. Извержения начинаются со взрыва газов в кратере, разрушения кратерной пробки и поступления на поверхность потоков полужидких грязебрекчий. Одновременно из жерла вулкана выбрасываются твердые обломки и глыбы пород, нередко происходит самовозгорание углеводородных газов и над кратером появляется горящее пламя. Его высота может достигать нескольких сотен метров. Массы грязебрекчий, содержащих большие количества воды, нефти, сероводорода и рассеянных сульфидов, растекаясь на площади, надстраивают старый конус. При этом объемы твердых выбросов огромны.
Извержение вулкана обычно длится несколько дней, сопровождается землетрясением, мощным подземным гулом и иногда распадается на отдельные фазы, в течение которых преобладают то одни, то другие продукты грязевулканической деятельности.
ВВЕДЕНИЕ 3
1. О ЗАКОНОМЕРНОСТЯХ РАСПРЕДЕЛЕНИЯ ГРЯЗЕВЫХ ВУЛКАНОВ 6
2. МОРФОГЕНЕТИЧЕСКАЯ ТИПИЗАЦИЯ ГРЯЗЕВЫХ ВУЛКАНОВ 9
3. О КОРНЯХ ГРЯЗЕВЫХ ВУЛКАНОВ 15
4. СТРОЕНИЕ И МЕХАНИЗМ ОБРАЗОВАНИЯ ГРЯЗЕВУЛКАНИЧЕСКИХ ОЧАГОВ 18
5. ДИНАМИКА РАЗВИТИЯ ГРЯЗЕВОГО ВУЛКАНА 23
СПИСОК ЛИТЕРАТУРЫ 27
4. СТРОЕНИЕ И МЕХАНИЗМ ОБРАЗОВАНИЯ ГРЯЗЕВУЛКАНИЧЕСКИХ ОЧАГОВ
Как
это было показано выше, скопления
грязевых вулканов тяготеют к нефтегазоносным
впадинам альпийской зоны складчатости,
в которых накапливаются
Действительно, в районе Керченского полуострова мощность майкопских глин достигает 1500 м, в Прикаспийско-Кубанской области майкопские и подстилающие их коунские глины имеют мощность в 2000 м, на Апшероне - 1600 м, а в Шемахино-Кобыстанском районе - более 2000 м. Для всех этих районов особенно типичны огромные СВПД.
Нам представляется, что избыточные давления флюидов в мощных толщах глин формируются главным образом за счет фазового преобразования глинистых минералов в области высоких температур (и давлений) и, в первую очередь, за счет иллитизации смектита.
В микромасштабе процесс, что реализуется в глинах при фазовых превращениях глинистых минералов, изображен в левой части графика. Здесь показано, как блоки смектитовой глины при погружении превращаются в иллитовые, уменьшаясь в объеме и выделяя кристаллизационную воду в зоне критических температур и давлений. В результате этого процесса, вблизи от границы иллитизации закладывается зона разуплотнения глин - пласт, в котором иллитовые блоки взвешены в выделившейся, кристаллизационной воде.
Глубже
Мощность
зоны разуплотнения глин и величина
пластовых давлений в ней в
значительной степени зависят от
мощности преобразуемой глинистой
толщи и от ее положения по отношению
к границе критических
Процесс по сути своей в какой-то степени напоминает "зонную плавку", предложенную А.П.Виноградовым и А.А.Ярошевским для объяснения. происхождения значительных масс гранитной магмы, выплавляющейся из мантии.
Изучение структурно-геохимических глин позволяет предположить, что мощность зоны разуплотнения может достигать 400-500 м и более.
В
реальных условиях элизионных систем
предложенная нами идеализированная схема
фазовых превращений глинистых
минералов существенно
I.
Количество смектита в
3.
Формирование подземных
4.
Пластовое давление в
5. В зоне разуплотнения глин протекает интенсивное упорядочение ориентировки частиц глинистых (и терригенных) минералов и перераспределение химических элементов, меняющих свои формы нахождения.
Здесь рождаются новые ассоциации аутигенных минералов, отражающие особенности новой физико-химической среды.
В ходе погружения глинистых толщ в глубь осадочного бассейна и иллитизации смектита рост поровых давлений прекращается тогда, когда в область СВПД попадает разлом, вертикальная зона трещиноватости или песчаный пласт-коллектор. Тогда поровые флюиды, накопленные в зоне разуплотнения, устремляются в поровые пространства песков или уходят по плоскости разломов, а поровые давления в глинах падают до обычных для данных глубин.
При существенной разнице поровых давлении в глинах и коллекторах могут, по-видимому, возникать коллизии, существенно меняющие текстуру и характер залегания не только глин, но и других осадочных пород в разрезе.
Очевидно, что когда пласт песка I входит в область разуплотнения и СВПД, он превращается в плывун, пластичность песчаника и глины выравнивается, и они оба деформируются как весьма пластичные и сходные образования.
Иногда перепад поровых давлений в глинах и песчаниках настолько велик, что их соприкосновение приводит к более ярким гидроразрывам; под огромным давлением разжиженный песок инъецируется в трещины, заполняет их и после декомпрессии цементируется компонентами, растворенными в пульпе.
Именно так формируются песчаные дайки, горизонты с включениями, диапировые апофизы и др. консеквентные тела, описанные нами в ряде предшествующих работ. Они нередко ассоциируются именно с грязевыми вулканами и это приводит к мысли, что в очаг подобных образований помимо разжиженных флюидами глин могут входить также разжиженные пески-плывуны. Их проявления особенно типичны для грязевых вулканов Туркмении, где грязебрекчии часто содержат тела песчаников самой причудливой формы.
Такям образом, очаг грязевого вулкана представляет собой тело, сложенное глинами, реже - песками, часто содержащими большое количество твердых обломков вмещающих пород и разжиженных гомогенизированными газоводными флюидами (вода, нефть, газы разного состава); оно формируется на больших глубинах за счет саморазвития элизионных систем и может при благоприятных обстоятельствах "питать" корни грязевулканических построек.
Потенциальные
возможности таких
Первый очень распространенный случай описан А.Г.Дурмишьяном и Н.Ю. Халиловым в связи со сверхвысокими пластовыми давлениямн в структурах Бакинского архипелага. Здесь при бурении ряда скважин наблюдался прихват инструмента, сужение ствола скважины, выбросы труб и выпирание глинистой массы на поверхность. Так, например, бурение скв. 42 на грязевом вулкане Дашгиль завершилось тем. что из забоя была выброшена вся колонна бурильных труб длиной в 2500 м, которая силой выброса оказалась кольцеообразно уложенной вокруг буровой вышки. Значительно чаще из забоя скважины бурильный инструмент вытеснялся пластичной глинистой массой, напоминавшей грязебрекчии, а затем эти скопления грязи выдавливались из ствола наподобие диапира.
Другой случай ассоциируется с появлением так называемых "буйных скважин", широко распространенных в США (штаты Техас и Луизиана), а также в Бакинском районе. Аварии в этом случае сопровождаются внезапным выделением большого количества воды и газа, провалом буровой и образованием округлых воронок диаметром 200-250 м. В течение длительного времени после аварии (8-10 лет) вода вы-носит на. поверхность огромное количество глинистого материала.
Различия
между этими двумя крайними случаями
заключаются в составе и
Можно думать, что эти два разных случая вскрытия очага грязевого вулкана скважинами до некоторой степени аналогичны формированию крайних морфогенетических типов грязевых вулканов в предложенной нами типизации. Первый случай сходен с образованием группы диапировых вулканов и вулканов с мощными грязевулканическими постройками, а второй - с "вдавленными синклиналями" и порсугелями, всегда близкими по форме к кальдерам обрушения.
Очевидно, что аналогия в поведении буровых скважин и грязевых вулканов косвенно подтверждает наши представления об условиях и механизме формирования грязевулканических очагов.
С
геологической точки зрения очаги
грязевулканической деятельности можно
рассматривать как разжиженные
и линзовидные слои-волноводы, залегающие
примерно в соответствии с напластованием
слоев, но местами пересекающие стратиграфические
границы. В тех местах, где они пересекаются
системой трещин и разломов в них образуются
консеквентные ответвления - собственно
корни грязевых вулканов. Выше эти образования
(ответвления) сменяются жерловыми грязебрекчиями,
а уже на поверхности - полями кратерных
и сопочных грязебрекчий, нередко формирующими
вулканические постройки,
5. ДИНАМИКА РАЗВИТИЯ ГРЯЗЕВОГО ВУЛКАНА
В развитии подавляющего большинства грязевых вулканов можно отчетливо различить три стадии: 1) стадию формирования грязевулканического очага, обусловленную особенностями развития элизионной системы; 2) стадию извержения грязевого вулкана, в значительной степени отражающую состав и условия залегания грязевулканического очага; 3) стадию пассивной грифонно-сальзовой деятельности, видоизменяющую последствия извержения грязевого вулкана и подготавливающую следующее его извержение.
Первая
стадия протекает на фоне аккумуляции
терригенно-глинистых
Очень
большое значение в деятельности
грязевых вулканов играет величина суммарного
СВПД, возникающего в очаге. Оно, так
же как и компонентный состав фдюидов
в значительной степени зависит
от первичных, палеогеографических, седиментационно-
В целом, формирование грязевулканического очага направлено в сторону интеграции и гомогенизации твердых, жидких и газообразных компонентов и в условиях закрытой физико-химической системы создает отличную от вмещающих отложений потенциально активную и подвижную среду слоя-волновода.
Вторая стадия развития грязевого вулкана начинается с вскрытия грязевулканическою очага системой разломов и трещин, что связывает переход закрытой физико-химической системы в открытую. Этот процесс сопровождается фазовой дифференциацией вещества и одновременным движением масс от очага к дневной поверхности.
Главным фактором, регулирующим извержение, является падение давления, связанное с перемещением грязевулканической массы по каналу от очага к дневной поверхности. Снижение давления очень интенсивно воздействует на пластичность разжиженных глин; как известно. уменьшение его превращает полужидкую массу в плотное глинистое тело.
Очень большую роль во время извержения вулкана играет потеря га-зовой составляющей; она меняет свойства остаточного раствора и неред-ко приводит к образованию аутигенных минералов, кольматирующих канал вулкана. Так, например, потеря газообразного СОо вблизи от дневной поверхности смещает карбонатные равновесия в сторону выпадения твердой фазы карбонатов. Последние цементируют до этого подвижные пески-плывуны и образуется пробка-кольматация, перекрывающая грязевулканический канал. Многократное повторение осаждения карбонатов и про-давливание сквозь сформировавшуюся песчано-карбонатную пробку газо-водных песчаных плывунов может создать целую систему карбонатных песчаных труб, известных под наименованием "шайтанские сады" (Западная Туркмения).