Виды ионизирующих излучений и их воздействие

Автор: Пользователь скрыл имя, 18 Декабря 2012 в 13:32, контрольная работа

Краткое описание

Ионизирующее излучение, если говорить о нем в общем виде, – это различные виды микрочастиц и физических полей способных ионизировать вещество. Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц – альфа-частицы и бета-частицы, которые возникают при ядерном взрыве. Защита от поражающих факторов является основой гражданской обороны страны. Рассмотрим основные виды ионизирующего излучения.

Оглавление

I. Введение
Альфа – излучение
Бета – излучение
Гамма – излучение
II. Единицы измерения
Беккерель (кюри)
Рентген
Грэй
Зиверт (бэр)
III. Биологическое действие ионизирующих излучений
Действие излучений на организм человека
Смертельно поглощенные и предельно допустимые дозы облучения
IV. Защита
Защита от альфа-, бета -, гамма-лучей
Действие при возникновении угрозы облучени
V. Заключение

Файлы: 1 файл

виды ионизирующих излучений и их воздействие.docx

— 28.27 Кб (Скачать)

СОЖЕРЖАНИЕ

I.   Введение

Альфа – излучение

Бета – излучение

Гамма – излучение

II.  Единицы измерения

Беккерель (кюри)

Рентген

Грэй

Зиверт (бэр)

  III. Биологическое действие  ионизирующих излучений

Действие излучений на организм человека

Смертельно поглощенные и предельно  допустимые дозы облучения

IV. Защита

Защита от альфа-, бета -, гамма-лучей

Действие при возникновении  угрозы облучения

V. Заключение

 

 

 

 

 

 

 

 

 

  1. Введение

 

Ионизирующее излучение, если говорить о нем в общем  виде, – это различные виды микрочастиц  и физических полей способных  ионизировать вещество. Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц – альфа-частицы и бета-частицы, которые возникают при ядерном взрыве. Защита от поражающих факторов является основой гражданской обороны страны. Рассмотрим основные виды ионизирующего излучения.

 

Альфа-излучение

Альфа излучение – поток  положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица  идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты.  Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-излучение

Бета-частица (β-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (β—), положительно заряженные — позитронами (β+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия  лежит в диапазоне от 2,5 кэВ (для  рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием  электрического и магнитного полей  отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

 

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2 (например, несколько миллиметров алюминия или несколько метров воздуха) практически полностью поглощает бета-частицы с энергией около 1 МэВ.

 

Гамма-излучение

Гамма -излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается  при переходах между возбуждёнными  состояниями атомных ядер (энергии  таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается  электроном атомной оболочки, передавая  ему всю энергию и ионизируя  атом).

Комптоновское рассеяние (гамма-квант  рассеивается на электроне, передавая  ему часть своей энергии).

Рождение электрон-позитронных  пар (в поле ядра гамма-квант с  энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при  энергиях выше нескольких десятков МэВ  гамма-квант способен выбивать нуклоны  из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения  может служить слой вещества. Эффективность  защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

 

  1.  Единицы измерения

Единицей измерения радиоактивности  служит беккерель (Бк, Bq). Один беккерель равен одному распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м).  Часто используют внесистемную единицу - кюри (Ки, Ci). Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7.1010 Бк.

Широко известная внесистемная единица рентген (Р, R) служит для определения экспозиционной дозы. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см3 воздуха образуется 2.109 пар ионов. 1 Р = 2, 58.10-4 Кл/кг.

Чтобы оценить действие излучения  на вещество, измеряют поглощенную  дозу, которая определяется как поглощенная  энергия на единицу массы. Единица  поглощенной дозы называется рад. Один рад равен 100 эрг/г.

В системе СИ используют другую единицу - грей (Гр, Gy). 1 Гр = 100 рад = 1 Дж/кг.

Биологический эффект различных  видов излучения неодинаков. Это  связано с отличиями в их проникающей  способности и характере передачи энергии органам и тканям живого организма. Поэтому для оценки биологических  последствий используют биологический  эквивалент рентгена - бэр. Доза в бэрах  эквивалентна дозе в радах, умноженной на коэффициент качества излучения. Для рентгеновских, бета- и гамма-лучей коэффициент качества считается равным единице, то есть бэр соответствует раду. Для альфа-частиц коэффициент качества равен 20 (это означает, что альфа-частицы вызывают в 20 раз более сильное повреждение живой ткани, чем та же поглощенная доза бета- или гамма-лучей). Для нейтронов коэффициент составляет от 5 до 20 в зависимости от энергии. В системе СИ для эквивалентной дозы введена специальная единица, называемая зиверт (Зв, Sv). 1 Зв = 100 бэр. Эквивалентная доза в зивертах соответствует поглощенной дозе в греях, умноженной на коэффициент качества.

 

 

 

 

 

  1. Биологическое действие ионизирующих излучений

Различают два вида эффекта  воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения  на организм были выявлены следующие  особенности:

ü      Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.

ü      Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.

ü      Действие от малых доз может суммироваться или накапливаться.

ü      Генетический эффект - воздействие на потомство.

Различные органы живого организма  имеют свою чувствительность к облучению.

Не каждый организм (человек) в целом одинаково реагирует  на облучение.

Облучение зависит от частоты  воздействия. При одной и той  же дозе облучения вредные последствия  будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение  может оказывать влияние на организм как при внешнем (особенно рентгеновское  и гамма-излучение), так и при  внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при  попадании внутрь организма через  лёгкие, кожу и органы пищеварения  источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ионизирующего  излучения подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего  излучения вода, являющаяся составной  частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются  лучевыми ожогами кожи и слизистых  оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельные поглощённые  дозы для отдельных частей тела следующие:

  • голова - 20 Гр;
  • нижняя часть живота - 50 Гр;
  • грудная клетка -100 Гр;
  • конечности - 200 Гр.

 

При облучении дозами, в 100-1000 раз превышающую смертельную  дозу, человек может погибнуть  во время облучения ("смерть под  лучом").

В зависимости от типа ионизирующего  излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего  излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.

В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные  нормы радиационной безопасности учитывают  три категории облучаемых лиц:

А - персонал, т.е. лица, постоянно  или временно работающие с источниками  ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения .

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая  при равномерном воздействии  в течение 50 лет не вызовет в  состоянии здоровья персонала неблагоприятных  изменений, обнаруживаемых современными методами.

Каждый житель Земли (категория  В) на протяжении всей своей жизни  ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос - до 30 мбэр, почва - до 38 мбэр, радиоактивные элементы в тканях человека - до 37 мбэр, газ радон - до 80 мбэр и другие источники).

 

Искусственные источники  добавляют ежегодную эквивалентную  дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования - 100-150 мбэр, просмотр телевизора -1-3 мбэр, ТЭЦ на угле - до 6 мбэр, последствия испытаний ядерного оружия - до 3 мбэр и другие источники).

Всемирной организацией здравоохранения (ВОЗ) предельно допустимая (безопасная) эквивалентная доза облучения для  жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

Информация о работе Виды ионизирующих излучений и их воздействие