Ускорители элементарных частиц

Автор: Пользователь скрыл имя, 06 Марта 2013 в 01:25, реферат

Краткое описание

Для того чтобы изучить ускорители элементарных частиц, нужно дать понятие элементарным частицам. Элементарная частица — это собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно.

Файлы: 1 файл

Ускоритьель.docx

— 949.53 Кб (Скачать)

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

 

УЧРЕЖДЕНИЕ  ОБРАЗОВАНИЯ

ГОМЕЛЬСКИЙ  ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ  ИМЕНИ П. О. СУХОГО

 

Факультет автоматизированных и информационных систем

 

Кафедра «Информационные  технологии»

 

 

 

 

по предмету «Физика»

 

Реферат

«Ускорители элементарных частиц»

 

 

 

 

 

 

 

Выполнила:  студент гр. ИТ-11

                                                                       Корж Ю. С.

Принял:      преподаватель                               Злотников И. И.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Гомель 2012

Элементарные  частицы

Для того чтобы изучить ускорители элементарных частиц, нужно дать понятие  элементарным частицам. Элементарная частица — это собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно.

Было интересно узнать, что существует 2 теории классификации и описания элементарных частиц: квантовая и полевая. На сегодняшний день квантовая теория является более точной. С её точки зрения:

Все элементарные частицы делятся  на два класса:

  • бозоны — частицы с целым спином (например, фотон, глюон, мезоны, бозон Хиггса).
  • фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

 

Составные частицы

  • адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны — адроны с целым спином, то есть являющиеся бозонами;
    • барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

 

Фундаментальные (бесструктурные) частицы

  • лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
  • кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизмконфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон — частица, переносящая электромагнитное взаимодействие;
    • восемь глюонов — частиц, переносящих сильное взаимодействие;
    • три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;
    • гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

 Рис.1    Краткий обзор различных семейств элементарных и составных частиц, и теории, описывающие их взаимодействия. Фермионы слева, Бозоны справа.

Здесь указаны  предполагаемые, но не найденные в природе: кварки, глюоны, гравитон,  но не указаны мезоны и барионы, и обнаруженный в 2012 году бозон Хиггса (отвечающий за наличие массы у частиц). Поскольку квантовая теория не считает данные элементарные частицы истинно элементарными.

Ускорители элементарных частиц

 

Как происходит любой эксперимент  с элементарными частицами?  Имеется  пучок первичных частиц. Этот пучок  частиц направляется на мишень. Мишенью  служат ядра атомов какого-нибудь элемента.

Очень часто с  этой целью используется водород, поскольку  его ядра являются протонами. Первичные  частицы, налетая на ядра мишени, взаимодействуют  с ними и возникают различные  ядерные реакции, в процессе которых  могут рождаться и новые элементарные частицы. Продукты реакции, разлетаясь в разные стороны, регистрируются приборами, их траектории измеряются и на основе анализа этих и других измерений  делаются заключения о свойствах как самой ядерной реакции, так и характеристиках вызвавшего ее взаимодействия, а также вывод о свойствах возникших в ходе реакции новых элементарных частиц. В общих чертах именно таким образом проходит любой эксперимент в лаборатории, имеющей дело с элементарными частицами. Поэтому как минимум необходим первичный пучок частиц, с которыми ведутся все последующие работы. Именно такие первичные пучки получаются на ускорителях элементарных частиц. 
В настоящее время умеют ускорять заряженные частицы — электроны и протоны. И весь прогресс в физике элементарных частиц связан с развитием электронных и протонных ускорителей. 


Ускоритель заряженных частиц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Конструктивно ускорители можно принципиально  разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз.

Линейные ускорители:

Высоковольтный ускоритель (ускоритель прямого действия)

Идеологически наиболее простой линейный ускоритель. Частицы ускоряются постоянным электрическим  полем и движутся прямолинейно по вакуумной камере, вдоль которой  расположены ускоряющие электроды. Ускорение заряженных частиц происходит электрическим полем, неизменным или  слабо меняющимся в течение всего  времени ускорения частиц. Важное преимущество высоковольтного усилителя  по сравнению с другими типами ускорителей — возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95 %) и возможностью создания сравнительно простых установок большой мощности (500 кВт и выше), что весьма важно при использовании ускорителей в промышленных целях.

Высоковольтные  ускорители можно разделить на четыре группы по типу генераторов, создающих  высокое напряжение:

  • Ускоритель Ван де Граафа. Ускоряющее напряжение создаётся генератором Ван де Граафа, основанном на механическом переносе зарядов диэлектрической лентой. В современных модификациях (пеллетронах) лента заменена цепью. Максимальные электрические напряжения ~20 МВ определяют максимальную энергию частиц ~20 МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором (например, генератором Кокрофта-Уолтона, который создаёт постоянное ускоряющее высокое напряжение ~5 МВ, преобразуя низкое переменное напряжение по схеме диодного умножителя.)
  • Трансформаторный ускоритель. Высокое переменное напряжение создаёт высоковольтный трансформатор, а пучок проходит в нужной фазе вблизи максимума электрического поля.
  • Импульсный ускоритель. Высокое напряжение создаётся импульсным трансформатором при разряде большого количества конденсаторов.

Линейный индукционный ускоритель

Ускорение в таком типе машин  происходит вихревым электрическим  полем, которое создают ферромагнитные кольца с обмотками, установленные вдоль оси пучка.

Линейный резонансный ускоритель

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускорение происходит электрическим полем высокочастотных резонаторов. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени энергии частиц.

Рис.2

Схема устройства линейного ускорителя частиц

Рис. 3 Генератор Ван де Граафа для первого в Венгрии линейного   ускорителя. На нём было получено напряжение 1 МВ в 1952 году

Рис.4  Линейный ускоритель электронов для Австралийского синхротрона

Циклические ускорители

Бетатрон

 

Циклический ускоритель, в котором  ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого  орбитой пучка. Поскольку для  создания вихревого электрического поля необходимо изменять магнитное  поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20 кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10—100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и  создан Видероэ в 1928 году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в 1940—1941 годах в США.

Циклотрон

В циклотроне частицы инжектируются  вблизи центра магнита с однородным полем с небольшой начальной  скоростью. Далее, частицы вращаются  в магнитном поле по окружности внутри двух полых электродов, т. н. дуантов, к которым приложено переменное электрическое напряжение. Частица ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы магнита.

Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1930 году Лоуренсом и Ливингстоном, за что первому была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50 МэВ/нуклон.

Микротрон

Он же — ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

FFAG

Ускоритель с постоянным (как  в циклотроне), но неоднородным полем, и переменной частотой ускоряющего  поля.

Фазотрон (синхроциклотрон)

Принципиальное отличие от циклотрона — изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600—700 МэВ.

Синхрофазотрон

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы  частицы в процессе ускорения  оставались на той же орбите, изменяется как ведущее магнитное поле, так  и частота ускоряющего электрического поля.

Синхротрон

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным  полем.

Ускоритель-рекуператор

По существу — это линак, но пучок после использования не сбрасывается, а направляется в ускоряющую структуру в «неправильной» фазе и замедляется, отдавая обратно энергию. Кроме того, бывают многопроходные ускорители-рекуператоры, где пучок, по принципу микротрона, совершает несколько проходов через ускоряющую структуру (возможно — по разным дорожкам), сперва набирая энергию, потом её возвращая.

 

Рис.5 Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка

Рис.6 Небольшой 900 МэВ синхротрон — бустер электронов и позитронов БЭП в ИЯФ СО РАН, Новосибирск

Ускорители  по назначению


Лазер на свободных  электронах

Специализированный источник когерентного рентгеновского излучения.

Информация о работе Ускорители элементарных частиц