Ультразвук

Автор: Пользователь скрыл имя, 12 Апреля 2013 в 20:50, реферат

Краткое описание

Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.

Оглавление

Введение
Ультразвук
Источники и приемники ультразвука.
Ультразвук в природе
Применение ультразвука и последствия его воздействия
Профилактика и лечение заболеваний, вызванных ультразвуком
Перспективы использования ультразвука
Заключение
Список литературы

Файлы: 1 файл

УЗ.docx

— 31.22 Кб (Скачать)
  1. Введение
  2. Ультразвук
  3. Источники и приемники ультразвука.
  4. Ультразвук в природе
  5. Применение ультразвука и последствия его воздействия
  6. Профилактика и лечение заболеваний, вызванных ультразвуком
  7. Перспективы использования ультразвука
  8. Заключение

Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком занимались многие видные ученые.

 

     Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.

В последние годы ультразвук начинает играть все большую роль в научных исследованиях. Успешно  проведены теоретические и экспериментальные  исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые  технологические процессы, протекающие  при воздействии ультразвука  в жидкой фазе. В настоящее время  формируется новое направление  химии – ультразвуковая химия, позволяющая  ускорить многие химико-технологические  процессы. Научные исследования способствовали зарождению нового раздела акустики – молекулярной акустики, изучающей  молекулярное взаимодействие звуковых волн с веществом. Возникли новые  области применения ультразвука: интроскопия, голография, квантовая акустика, ультразвуковая фазомерия, акустоэлектроника.

Наряду с теоретическими и экспериментальными исследованиями в области ультразвука выполнено  много практических работ. Разработаны  универсальные и специальные  ультразвуковые станки, установки, работающие под повышенным статическим давлением, ультразвуковые механизированные установки для очистки деталей, генераторы с повышенной частотой и новой системой охлаждения, преобразователи с равномерно распределенным полем. Созданы и внедрены в производство автоматические ультразвуковые установки, которые включаются в поточные линии, позволяющие значительно повысить производительность труда.

 

Ультразвук (УЗ) – упругие  колебания и волны, частота которых  превышает 15 – 20 кГц. Нижняя граница  области ультразвуковых частот, отделяющая ее от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, так как верхняя граница слухового восприятия у каждого человека своя. Верхняя граница ультразвуковых частот обусловлена физической природой упругих волн, которые могут распространяться лишь в материальной среде, т.е. при условии, что длина волны значительно больше длины свободного пробега молекул в газе или межатомных расстояний в жидкостях и твердых телах. В газах при нормальном давлении верхняя граница частот ультразвука составляет  109 Гц, в жидкостях и твердых телах граничная частота достигает 1012-1013 Гц. В зависимости от длины волны и частоты ультразвука обладает различными специфическими особенностями излучения, приема, распространения и применения, поэтому область ультразвуковых частот подразделяют на три области:

  • низкие ультразвуковые частоты (1,5×104 – 105 Гц);
  • средние (105 – 107 Гц);
  • высокие (107 – 109 Гц).

 

Упругие волны с частотами 109 – 1013 Гц принято называть гиперзвуком.

 

 

Источники и приемники ультразвука.

В природе ультразвук встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т.д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока – струи газа или жидкости. Вторая группа излучателей – электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов. Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на ультразвук.

 

 

 

Применение ультразвука в природе

 

Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые - Vеsperti+ lianidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые - Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 - 5 см от головы животного давление ультразвука достигает 60 мбар, т.е. соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, т.е. в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываютсяультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 - 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отраженными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полета эхолокационную частоту таким образом, чтобы частота отраженного ультразвука оставалась в области максимальной чувствительности их "слуховых" центров, они могут определить скорость собственного перемещения.

У ночных бабочек из семейства  медведиц развился генератор ультразвуковых помех, "сбивающий со следа" летучих мышей, преследующих этих насекомых.

Не менее умелые навигаторы - жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки - от Панамы на северо-западе до Перу на юге и Суринама на востоке. Самый большой подарок природы - это способность гуахаро к эхолокации. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щелкающие звуки, свободно улавливаемые и человеческим ухом (их частота примерно 7 000 герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чуткой птицей.

 

 

Применение ультразвука  и последствия его воздействия

 

      Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством ультразвуковых волн, второе – с активным воздействием на вещество и третье – с обработкой и передачей сигналов. При каждом конкретном применении используется ультразвук определенного частотного диапазона.

 

      Впервые идея практического использования ультразвука возникла, как известно, в первой половине прошлого века в связи с разработкой методов и приборов для обнаружения в глубине моря различных объектов: подводных лодок, рифов, подводных частей айсбергов и т.д. Это было вызвано прежде всего гибелью в 1912г. "Титаника" и участием подводных лодок, начавшейся в военных операциях во время первой мировой войны.

Известно множество примеров использования ультразвука в лечебной практике (ультразвуком лечат сейчас заболевания нервной системы и опорно-двигательного аппарата, стоматологические, урологические, гинекологические, офтальмологические и другие болезни), однако и сегодня эта область медицинской науки и техники успешно развивается. Это неудивительно, поскольку даже малоинтенсивное ультразвуковое излучение влияет на тканевые и внутриклеточные процессы в организме, на проницаемость стенок кровеносных сосудов, свойства и функции других органов.

Действия ультразвуковых волн гибнут многие микроорганизмы, что было важно  для медицины. Так, ультразвук вызвал гибель некоторых болезнетворных микробов: тифозной палочки, кишечной и туберкулезной. Это свойство используется для очистки  воды, стерилизации инструментов.

      Значительное распространение ультразвук получил в медицине для лечения заболеваний позвоночника, суставов, периферической нервной системы, а также для выполнения хирургических операций и диагностики заболеваний. Американскими учеными был разработан эффективный метод удаления опухолей головного мозга(2002 г), не поддающихся обычному хирургическому лечению. В его основе принцип, использующийся при удалении катаракты - дробление патологического образования фокусированным ультразвуком. Впервые разработан аппарат, способный создать в заданной точке ультразвуковые колебания необходимой интенсивности и при этом не повредить окружающие ткани. Источники ультразвука располагаются на черепе пациента и испускают относительно слабые колебания. Компьютер рассчитывает направление и интенсивность ультразвуковых импульсов таким образом, чтобы они только в опухоли сливались друг с другом и разрушали ткани.

       Кроме того, врачи научились с помощью ультразвука выращивать утерянные зубы заново (2006 г). Как обнаружили исследователи из канадского университета Альберты, пульсирующий ультразвук низкой интенсивности стимулирует повторный рост выбитых и выпавших зубов. Медики разработали особую технологию - миниатюрную “систему на чипе”, обеспечивающую заживление зубной ткани. Благодаря беспроводному выполнению преобразователя ультразвука, микроскопическое устройство, укомплектованное биологически совместимыми материалами, помещается во рту пациента, не доставляя ему дискомфорта.

       Интенсивно используется в течение трех десятилетий диагностический ультразвук во время беременности и при заболеваниях отдельных органов. Ультразвук, натыкаясь на препятствие в виде органов человека или плода, определяет их наличие и размеры.

      Британские исследователи из Лестерского университета применили ультразвуковые технологии в автоматизированной установке, которая снимает мерки с клиента для пошива одежды по индивидуальному заказу. В установке источник ультразвука и шестьдесят сенсоров регистрируют сигналы, отраженные поверхностью тела. Для этих целей в технике используются звуковые колебания высокой частоты (ВЧ) - от 500 кГц до 5 МГц и малой мощности - от 0,1 до 2,0 Вт/см2. Интенсивность применяемого терапевтического ультразвука чаще всего не превышает 0,2-0,4 Вт/см2; частота колебаний ультразвука, при-меняемая для диагностики, колеблется от 800 кГц до 20 МГц, интенсивность варьирует от 0,01 до 20 Вт/сми более.

        Последствия воздействия ультразвука на организм: функциональные изменения со стороны центральной и перифери-ческой нервной системы, сердечно-сосудистой системы, слухового и вестибу-лярного анализатора, эндокринные и гуморальные отклонения от нормы; головные боли с преимуществен-ной локализацией в фронто-назальной орбитальной и височной областях, чрез-мерно повышеннаяю утомляемость; чувство давления в ушах, неуверенность походки, головокружение; нарушение сна (сонливость днем); раздражительность, гиперакузия, гиперосмия, боязнь яркого света, повышение порогов возбуди-мости болевого; в условиях воздей-ствия интенсивного ультразвука, сопровождаемого шумом, - не-достаточность сосудистого тонуса (понижение артериального давления, гипо-тония), растормаживание кожно-сосудистых рефлексов в сочетании с яркой вазомоторной реакцией; общецеребральные нарушения; вегетативный полиневрит рук (реже и ног) разной степени (пастозность, акроцианоз пальцев, термоасимметрия, расстрой-ство чувствительности по типу перчаток или носков); по-вышение температуры тела и кожи, снижение уровня сахара в крови, эозинофилия. Степень выраженности изменений зависит от интенсивности и длительности воздействия ультразвука и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выраженное снижение слуха. В случае продолжения контакта с ультразвуком указанные расстройства приобретают более стойкий характер. Характер изменений, возникающих в организме под воздействием ультразвука, зависит от дозы воздействия. Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эффект - микромассаж, ускорение обменных процессов. Большие дозы - уровень звука 120 и более дБ - дают поражающий эффект.

       В поле ультразвуковых колебаний в живых тканях ультразвук оказывает механическое, термическое, физико-химическое воздействие (микромассаж клеток и тканей). При этом активизируются обменные процессы, повышаются иммунные свойства организма. Ультразвук оказывает выраженное обезболивающее, спазмолитическое, противовоспалительное и общетонизирующее действие, стимулирует крово- и лимфообращение, ускоряет регенеративные процессы, улучшает трофику тканей. Время воздействия на болевую зону 3-5 мин, а в сумме - на несколько зон - не более 12-15 мин на всю процедуру и не более 10-12 процедур раз в 3 месяца. Так как ультразвук полностью отражается от тончайших прослоек воздуха, к телу его подводят через безвоздушные контактные среды.

Информация о работе Ультразвук