Сверхпроводимость

Автор: Пользователь скрыл имя, 19 Декабря 2014 в 18:40, реферат

Краткое описание

1. Явление сверхпроводимости
2. Свойства сверхпроводников
3. Применение сверхпроводников

Файлы: 1 файл

реферат.doc

— 102.50 Кб (Скачать)

Теория показывает, что максимальная РV пропорциональна (Hк2 )3/2 . Это соотношение в основном подтверждается экспериментально. В случае спеченного ниобия, содержащего микропоры, РV прямо пропорциональна (Hк2 )n , n = 1,6-1,9, причем РV прямо пропорциональна также и удельной поверхности пор. В общем случае РV зависит от размера центров закрепления и от расстояния между ними. Выделения второй фазы или дислокационные петли диаметром менее 7,0 нм слабо влияют или вообще не вызывают повышения критической плотности тока. Эффективное закрепление линий магнитного потока наблюдается при размере центров закрепления 10 нм и более.

Активные центры закрепления линий магнитного потока в сверхпроводниках создают, используя выделение второй фазы из пересыщенного твердого раствора или облучение частицами высоких энергий. В последнем случае, отжигая облученный материал, вследствие образования скоплений вакансий получают равномерно распределенные в объеме сверхпроводника дислокационные петли. В некоторых сплавах (Zr-Nb, Nb-Ti, Ti-V) частицы второй фазы образуются при закалке β-фазы с о, ц. к. решеткой. В процессе закалки высокотемпературная β-фаза испытывает мартенситное превращение в α`-фазу с ГП решеткой, игольчатые выделения которой служат точками закрепления линий магнитного потока.

Примером образования центров закрепления при выделении из пересыщенного твердого раствора может служить сплав Nb- 25% (ат.) Та, насыщенный при высокой температуре азотом. При старении происходит выделение нитрида Nb2 N в форме пластинок толщиной 40 нм. Объемная сила закрепления также пропорциональна числу частиц нитрида в единице объема. Варьируя содержание кислорода, условия облучения нейтронами и отжига, можно получить образцы ниобия, содержащие дислокационные петли разного диаметра. Оказалось, что сила закрепления в образце Nb со средним диаметром петель 16,5 нм и максимальным диаметром 150 нм в 20 раз больше, чем у образца ниобия со средним диаметром петель 2,5 нм и максимальным диаметром 4,5 нм. Приведенные примеры наглядно иллюстрируют чувствительность сверхпроводящих характеристик к фазовому и структурному состояниям сплавов и возможность управления этими характеристиками изменением режимов термообработки, деформации, облучения.

 

3. Применение сверхпроводников

сопротивление металл сверхпроводимость валентность

Использование явления сверхпроводимости открывает широкие возможности в технике. Широкое применение находят источники мощных постоянных магнитных полей в виде соленоидов с обмотками из сверхпроводящих материалов. Ведутся работы по использованию сверхпроводников для линий электропередач и во многих других электротехнических устройствах.

Из всех элементов, способных переходить в сверхпроводящее состояние, ниобий имеет самую высокую критическую температуру перехода 9,17 К (-263,83 °С). Практическое использование нашли сверхпроводящие сплавы с высоким содержанием ниобия: 65БТ и 35БТ (ГОСТ 10994-74). Сплав 65БТ содержит 22-26% Ti; 63-68% Nb; 8,5-11,5% Zr и имеет критическую температуру перехода 9,7 К (-263,3 СС). Для Т = 4,2 К критические значения плотности тока составляют 2,8·106 А/м2 , на пряженностьмагнитногополя (6-7,2)·106 А/м. Проволоку из сплава 35БТ состава 60-64% Ti; 33,5-36,5% Nb; 1,7-4,3% Zr из-за повышенной хрупкости заливают в медную матрицу.

Оба сплава применяют для обмоток мощных генераторов, магнитов большой мощности (например, поезда на магнитной подушке), туннельных диодов (для ЭВМ).

Способность сверхпроводников, являющихся диамагнетиками, выталкивать магнитное поле, используют в магнитных насосах, позволяющих генерировать магнитные поля колоссальной напряженности, а также в криогенных гироскопах. Якорь гироскопа, изготовленный из сверхпроводника, «плавает» в магнитном поле. Отсутствие опор и подшипников устраняет трение и повышает долговечность гироскопа.

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2 Cu3 Ox , получены вещества, для которых температура Тcперехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т.н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим.

Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона,андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.

Сверхпроводник наименьшего размера был создан в 2010 году на основе органического сверхпроводника (BETS)2 GaCl4 , где аббревиатура BETS означает бисэтилендитиотетраселенафульвален. Созданный сверхпроводник состоит всего из четырёх пар молекул этого вещества при общей длине образца порядка 3,76нм.

 


Информация о работе Сверхпроводимость