Автор: Пользователь скрыл имя, 09 Марта 2011 в 08:03, курсовая работа
Сила в технике - величина, являющаяся мерой механического действия на данное материальное тело других тел. Это действие вызывает изменение скоростей точек тела или его деформацию и может иметь место как при непосредственном контакте (давления прижатых друг к другу тел, трение), так и через посредство создаваемых телами полей (поле тяготения, электромагнитное поле).
Введение………..…………………………………..………………….3
1.Сила - вектор. Система сил.………………………..……………….4
2.Cиловые передачи механического привода.………………………5
3.Механические передачи….…………………………………………5
3.1 Зубчатые передачи……….…………………………………...7
3.2 Фрикционные передачи………………………………………9
3.3 Ременные передачи………….…………..…………………..10
3.4 Планетарные передачи…………………………..…………..11
3.5 Волновые механические передачи…………...……………..12
3.6 Цепные передачи…………………………………………….13
4. Сложение и разложение сил…………………….………………..15
5. Механизмы для реализации………………………………………17
Заключение…………………………………….……………………..18
Список используемой литературы………………………………….19
- необходимость высокой точности изготовления и монтажа;
- незащищенность от перегрузок;
- наличие вибраций, которые возникают в результате неточного изготовления
Классификация зубчатых передач. По расположению осей валов различают передачи с параллельными (рис. 2, а – в, з), с пересекающимися (рис. 2, г, д) и перекрещивающимися (рис. 2, е, ж) геометрическими осями.
По форме могут быть цилиндрические (рис. 2, а – в, з), конические (рис. 2, г, д, ж), эллиптические, фигурные зубчатые колеса и колеса с неполным числом зубьев (секторные).
По форме профилей зубьев различают эвольвентные и круговые передачи, а по форме и расположению зубьев – прямые (рис. 2, а, г, е, з), косые (рис. 2, б), шевронные (рис. 2, в) и круговые (рис. 2, д, ж).
В зависимости от относительного расположения зубчатых колес передачи могут быть с внешним (рис. 2, а) или внутренним (рис. 2, з) их зацеплением. Для преобразования вращательного движения в возвратно поступательное и наоборот служит реечная передача (рис. 2, е).
Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.
Рис. 2. Зубчатые передачи
Фрикционные
передачи
Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.
Для нормальной работы передачи необходимо, чтобы сила трения Fтр была больше окружной силы Ft, определяющей заданный вращающий момент:
В зависимости от назначения фрикционные передачи можно разделить на две основные группы: передачи с нерегулируемым передаточным отношением (рис. 3, а); регулируемые передачи, называемые вариаторами, позволяющими плавно (бесступенчато) изменять передаточное отношение.
а
Рис. 3. Схемы фрикционных передач
Различают
передачи с параллельными и
Скольжение в передаче. Различают три вида скольжения: буксование, упругое скольжение и геометрическое скольжение.
Буксование
наступает при перегрузках
Упругое скольжение характерно для нормально работающей передачи. Участки поверхности ведущего катка подходят к площадке контакта сжатыми, а отходят растянутыми. На ведомом катке наблюдается обратная картина. Касание сжатых и растянутых волокон катков приводит к их упругому скольжению, что вызывает отставание ведомого катка от ведущего. Геометрическое скольжение связано с тем, что окружные скорости вращения ведущего и ведомого катков на площадке их контакта различны. Например, в лобовом вариаторе (см. рис. 3, б) окружная скорость V2 меняется с изменением R, а скорость V1 на этой площадке постоянна. Геометрическое скольжение является основной причиной изнашивания рабочих поверхностей элементов фрикционных передач.
Ременные
передачи
Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.
В
зависимости от формы поперечного
сечения ремня различают: плоскоременную,
клиноременную и круглоременную (рис.
4, а – в) передачи.
Рис. 4 Ременные
передачи
Сравнивая ременную передачу с зубчатой можно отметить следующие преимущества:
- возможность передачи движения на значительное расстояние (до 15 м и более);
- плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях;
- способность выдерживать перегрузки (до 300 %) благодаря увеличению скольжения ремня;
- невысокая стоимость;
- простота обслуживания и ремонта.
Основными недостатками ременной передачи являются:
- непостоянство передаточного отношения из-за скольжения ремня на шкивах;
- значительные габаритные размеры при больших мощностях (для одинаковых условий диаметры шкивов примерно в 5 раз больше диаметров зубчатых колес);
- большое давление на шкивы в результате натяжения ремня;
- низкая долговечность ремней (от 1000 до 5000 ч).
Критерии
работоспособности
и расчета. Опыт эксплуатации передач
в различных машинах и механизмах показал,
что работоспособность передач ограничивается
преимущественно тяговой
способностью, определяемой силой трения
между ремнем и шкивом, долговечностью
ремня, которая в условиях нормальной
эксплуатации ограничивается разрушением
ремня от усталости.
Планетарные
передачи
Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями (рис. 5). Передача состоит из центрального колеса 1 с наружными зубьями, центрального колеса 3 с внутренними зубьями, водила Н и сателлитов 2. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.
При неподвижном колесе 3 движение может передаваться от 1 к Н или от Н к 1; при неподвижном водиле Н – от 1 к 3 или от 3 к 1. При всех свободных звеньях одно движение можно раскладывать на два (от 3 к 1 и Н) или два соединять в одно (от 1 и Н к 3). В этом случае передачу называют дифференциальной.
Рис. 5. Планетарный механизм
Планетарные передачи имеют существенные преимущества:
- нагрузка в планетарных передачах передается одновременно несколькими сателлитами, следовательно, силы, действующие на зубья колес, соответственно уменьшаются, что позволяет использовать колеса меньших габаритных размеров и массы;
- в планетарных передачах рационально используются колеса внутреннего зацепления, обладающие большой (по сравнению с колесами наружного зацепления) нагрузочной способностью;
- равномерное распределение сателлитов по окружности приводит к уравновешиванию радиальных сил, действующих на колеса, и, следовательно, к разгрузке подшипников центральных колес и водила;
- применение планетарного механизма позволяет легко осуществить компактную конструкцию соосного редуктора, т.е. такого редуктора, у которого оси ведущего и ведомого валов совпадают. Это имеет важное значение для поршневых и турбовинтовых авиационных двигателей. Например, при помощи так называемого дифференциального планетарного редуктора можно от одного двигателя приводить во вращение два соосных винта, скорости вращения которых будут изменяться в полете в соответствии с изменением шага винта.
К
недостаткам планетарных
Волновые
механические передачи
Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером.
Волновые зубчатые передачи (рис. 6) являются разновидностью планетарных передач, у которых одно из колес гибкое.
Волновая передача включает в себя жесткое зубчатое колесо b с внутренними зубьями и вращающееся гибкое колесо g c наружными зубьями. Гибкое колесо входит в зацепление с жестким в двух зонах с помощью генератора волн (например, водила h с двумя роликами), который соединяют с корпусом передачи b.
Рис. 6. Волновая зубчатая передача
Гибкое зубчатое колесо представляет собой гибкий цилиндр, один конец которого соединен с валом и сохраняет цилиндрическую форму, а другой конец имеет зубья. Генератор волн служит для образования и движения волны деформации на гибком зубчатом колесе.
Генераторы волн бывают механические, пневматические, гидравлические, электромагнитные. Механические генераторы могут быть двухроликовыми, четырехроликовыми, дисковыми, кольцевыми и кулачковыми. Генератор волн может располагаться внутри гибкого колеса или вне его. Число волн – любое.
К основным достоинствам волновых передач по сравнению с зубчатыми передачами следует отнести:
- их меньшие массу и габариты;
- кинематическую точность;
- высокую демпфирующую способность;
- обеспечение больших передаточных отношений в одной ступени (50…300);
Недостатки:
- сложность конструкции;
- ограничение скорости вращения ведущего вала генератора волн при больших диаметрах колес;
- повышенные
потери мощности на трение и на деформацию
гибкого колеса (КПД составляет 0,7-0,85 при
U = 80-250).
Цепные
передачи
Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 7, а) и зубчатой цепью (рис. 7, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.
Преимуществами цепных передач являются:
- отсутствие проскальзывания;
- достаточная быстроходность (20-30 м/с);
- сравнительно большое передаточное число (7 и более);
- высокий КПД;
- возможность передачи движения от одной цепи нескольким звездочкам;
- небольшая
нагрузка на валы, т.к. цепная передача
не нуждается в предварительном натяжении
цепи необходимом для ременной передачи.
Информация о работе Сложение и разложение сил. Механизмы для реализации