Развитие в России работ в области нанотехнологий

Автор: Пользователь скрыл имя, 19 Декабря 2011 в 12:08, реферат

Краткое описание

Стратегическими национальными приоритетами Российской Федерации, изложенными в утвержденных 30 марта 2002 г. Президентом Российской Федерации "Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу" [1], являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Файлы: 1 файл

реферат нано.doc

— 142.83 Кб (Скачать)

    в конструировании молекулярных устройств (наномашин и нанодвигателей, устройств распознавания и хранения информации) и в создании наноструктур, в которых роль функциональных элементов выполняют отдельные молекулы. В перспективе это позволит использовать принципы приема и обработки информации, реализуемые в биологических объектах (молекулярная электроника);

    в разнообразном применении фуллереноподобных материалов и нанотрубок, обладающих рядом особых характеристик, включая химическую стойкость, высокие прочность, жесткость, ударную вязкость, электро- и теплопроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Углеродные нанотрубки используются также в качестве игольчатых щупов сканирующих зондовых микроскопов, в дисплеях с полевой эмиссией, высокопрочных композиционных материалах, электронных устройствах, в водородной энергетике в качестве контейнеров для хранения водорода;

    в создании новых классов наноматериалов и наноструктур, включая:

    фотонные кристаллы, поведение света в которых сравнимо с поведением электронов в полупроводниках. На их основе возможно создание приборов с быстродействием более высоким, чем у полупроводниковых аналогов;

    разупорядоченные нанокристаллические среды для лазерной генерации и получения лазерных дисплеев с более высокой яркостью (на 2-3 порядка выше, чем на обычных светодиодах) и большим углом обзора;

    функциональную керамику на основе литиевых соединений для твердотельных топливных элементов, перезаряжаемых твердотельных источников тока, сенсоров газовых и жидких сред для работы в жестких технологических условиях;

    квазикристаллические наноматериалы, обладающие уникальным сочетанием повышенной прочности, низкого коэффициента трения и термостабильности, что делает их перспективными для использования в машиностроении, альтернативной и водородной энергетике;

    конструкционные наноструктурные твердые и прочные сплавы для режущих инструментов с повышенной износостойкостью и ударной вязкостью, а также наноструктурные защитные термо- и коррозионностойкие покрытия;

    полимерные композиты с наполнителями из наночастиц и нанотрубок, обладающих повышенной прочностью и низкой воспламеняемостью;

    биосовместимые наноматериалы для создания искусственной кожи, принципиально новых типов перевязочных материалов с антимикробной, противовирусной и противовоспалительной активностью;

    наноразмерные порошки с повышенной поверхностной энергией, в том числе магнитные, для дисперсионного упрочнения сплавов, создания элементов памяти аудио- и видеосистем, добавок к удобрениям, кормам, магнитным жидкостям и краскам;

    органические наноматериалы, обладающие многими свойствами, недоступными неорганическим веществам. Органическая нанотехнология на базе самоорганизации позволяет создавать слоистые органические наноструктуры, являющиеся основой органической наноэлектроники и конструировать модели биомембран клеток живых организмов для фундаментальных исследований процессов их функционирования (молекулярная архитектура);

    полимерные нанокомпозитные и пленочные материалы для нелинейных оптических и магнитных систем, газовых сенсоров, биосенсоров, мультислойных композитных мембран;

    покровные полимеры для защитных пассивирующих, антифрикционных, селективных, просветляющих покрытий;

    полимерные наноструктуры для гибких экранов;

    двумерные сегнетоэлектрические пленки для энергонезависимых запоминающих устройств;

    жидкокристаллические наноматериалы для высокоинформативных и эргономичных типов дисплеев, новых типов жидкокристаллических дисплеев (электронная бумага).

Перспективы использования нанотехнологий

    Использование возможностей нанотехнологий может уже в недалекой перспективе принести резкое увеличение стоимости валового внутреннего продукта и значительный экономический эффект в следующих базовых отраслях экономики.

    В машиностроении - увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий, широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков. Созданные с использованием нанотехнологий методы измерений и позиционирования обеспечат адаптивное управление режущим инструментом на основе оптических измерений обрабатываемой поверхности детали и обрабатывающей поверхности инструмента непосредственно в ходе технологического процесса. Например, эти решения позволят снизить погрешность обработки с 40 мкм до сотен нанометров при стоимости та кого отечественного станка около 12 тыс. долл. И затратах на модернизацию не более 3 тыс. долл. Равные по точности серийные зарубежные станки стоят не менее 300-500 тыс. долл. При этом в модернизации нуждаются не менее 1 млн активно используемых металлорежущих станков из примерно 2,5 млн станков, находящихся на балансе российских предприятий.

    В двигателестроении и автомобильной промышленности - за счет применения наноматериалов, более точной обработки и восстановления поверхностей можно добиться значительного (до 1,5-4 раз) увеличения ресурса работы автотранспорта, а также снижения втрое эксплуатационных затрат (в том числе расхода топлива), улучшения совокупности технических показателей (снижение шума, вредных выбросов), что позволяет успешнее конкурировать как на внутреннем, так и на внешнем рынках.

    В электронике и оптоэлектронике - расширение возможностей радиолокационных систем за счет применения фазированных антенных решеток с малошумящими СВЧ-транзисторами на основе наноструктур и волоконно-оптических линий связи с повышенной пропускной способностью с использованием фотоприемников и инжекционных лазеров на структурах с квантовыми точками; совершенствование тепловизионных обзорно-прицельных систем на основе использования матричных фотоприемных устройств, изготовленных на базе нанотехнологий и отличающихся высоким температурным разрешением; создание мощных экономичных инжекционных лазеров на основе наноструктур для накачки твердотельных лазеров, используемых в фемтосекундных системах.

    В информатике - многократное повышение производительности систем передачи, обработки и хранения информации, а также создание новых архитектур высокопроизводительных устройств с приближением возможностей вычислительных систем к свойствам объектов живой природы с элементами интеллекта; адаптивное распределение управления функциональными системами, специализированные компоненты которых способны к самообучению и координированным действиям для достижения цели.

    В энергетике (в том числе атомной) - наноматериалы используются для совершенствования технологии создания топливных и конструкционных элементов, повышения эффективности существующего оборудования и развития альтернативной энергетики (адсорбция и хранение водорода на основе углеродных наноструктур, увеличение в несколько раз эффективности солнечных батарей на основе процессов накопления и энергопереноса в неорганических и органических материалах с нанослоевой и кластерно-фрактальной структурой, разработка электродов с развитой поверхностью для водородной энергетики на основе трековых мембран). Кроме того, наноматериалы применяются в тепловыделяющих и нейтронопоглощающих элементах ядерных реакторов; с помощью нанодатчиков обеспечивается охрана окружающей среды при хранении и переработке отработавшего ядерного топлива и мониторинга всех технологических процедур для управления качеством сборки и эксплуатации ядерных систем; нанофильтры используются для разделения сред в производстве и переработке ядерного топлива.

    В сельском хозяйстве - применение нанопрепаратов стероидного ряда, совмещенных с бактериородопсином, показало существенное (в среднем 1,5-2 раза) увеличение урожайности практически всех продовольственных (картофель, зерновые, овощные, плодово-ягодные) и технических (хлопок, лен) культур, повышение их устойчивости к неблагоприятным погодным условиям. Например, в опытах на различных видах животных показано резкое повышение их сопротивляемости стрессам и инфекциям (падеж снижается в 2 раза относительно контрольных групп животных) и повышение продуктивности по всем показателям в 1,5-3 раза.

    В здравоохранении - нанотехнологий обеспечивают ускорение разработки новых лекарств, создание высокоэффективных нанопрепаративных форм и способов доставки лекарственных средств к очагу заболевания. Широкая перспектива открывается и в области медицинской техники (разработка средств диагностики, проведение нетравматических операций, создание искусственных органов). Общепризнано, что рынок здравоохранения является одним из самых значительных в мире, в то же время он слабо структурирован и в принципе "не насыщаем", а решаемые задачи носят гуманитарный характер.

    В экологии - перспективными направлениями являются использование фильтров и мембран на основе наноматериалов для очистки воды и воздуха, опреснения морской воды, а также использование различных сенсоров для быстрого биохимического определения химического и биологического воздействий, синтез новых экологически чистых материалов, биосовместимых и биодеградируемых полимеров, создание новых методов утилизации и переработки отходов. Кроме того, существенное значение имеет перспектива применения нанопрепаративных форм на основе бактериородопсина. Исследования, проведенные с натуральными образцами почв, пораженных радиационно и химически (в том числе и чернобыльскими), показали возможность восстановления их с помощью разработанных препаратов до естественного состояния микрофлоры и плодоносности за 2,5-3 месяца при радиационных поражениях и за 5-6 месяцев при химических.

Ключевые проблемы развития нанотехнологий в России

    Анализ мирового опыта формирования национальных и региональных программ по новым научно-техническим направлениям свидетельствует о необходимости выявления некоторых ключевых проблем в области разработки наноматериалов и нанотехнологий.

    Первая проблема - формирование круга наиболее перспективных их потребителей, которые могут обеспечить максимальную эффективность применения современных достижений. Необходимо выявить, а затем и сформировать потребности общества в развитии нанотехнологий и наноматериалов, способных существенно повлиять на экономику, технику, производство, здравоохранение, экологию, образование, оборону и безопасность государства.

    Вторая проблема - повышение эффективности применения наноматериалов и нанотехнологий. На начальном этапе стоимость наноматериалов будет выше, чем обычных материалов, но более высокая эффективность их применения будет давать прибыль. Поэтому необходимо среднесрочное и долгосрочное финансирование НИОКР по наноматериалам и нанотехнологиям с выбором способов реализации программы, включая масштабы и источники финансирования. Государство заинтересовано в быстрейшем развитии перспективного направления, поэтому оно должно взять на себя основные расходы на проведение фундаментальных и прикладных исследований, формирование инноваций.

    Третья проблема - собственно разработка новых промышленных технологий получения наноматериалов, которые позволят России сохранить некоторые приоритеты в науке и производстве.

    Четвертая проблема - обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства, особенно в области электроники и информатики.

    Пятая проблема - широкомасштабное развитие фундаментальных исследований во всех областях науки и техники, связанных с развитием нанотехнологий.

    Шестая проблема - создание исследовательской инфраструктуры, включая:

    организацию центров коллективного пользования уникальным технологическим и диагностическим оборудованием;

    современное приборное оснащение научных и производственных организаций инструментами и приборами для проведения работ в области нанотехнологий;

    обеспечение доступа научно-технического персонала к синхротронным и нейтронным источникам (как российским, так и зарубежным), к сверхпроизводительным вычислительным комплексам;

    разработку специальной метрологии и государственных стандартов в области нанотехнологий;

    развитие физических и аппаратурно-методических основ адекватной диагностики наноматериалов на базе электронной микроскопии высокого разрешения, сканирующей электронной и туннельной микроскопии, поверхностно-чувствительных рентгеновских методик с использованием синхротронного излучения, электронной микроскопии для химического анализа, электронной спектроскопии, фотоэлектронной спектроскопии.

    Седьмая проблема - создание финансово-экономического механизма формирования оборотных средств у институтов и предприятий-разработчиков наноматериалов и нанотехнологий, а также развитие инфраструктуры, обеспечивающей поддержку инновационной деятельности в этой сфере на всех ее стадиях - от выполнения научно-технических разработок до реализации высокотехнологической продукции.

Информация о работе Развитие в России работ в области нанотехнологий