Расчет и моделирование синфазной антенной решетки

Автор: Пользователь скрыл имя, 01 Февраля 2013 в 12:11, дипломная работа

Краткое описание

Для оценки и сравнения между собой различных антенн вводится ряд характеристик. В данной главе рассматриваются параметры, характеризующие направленные свойства антенны и степень согласованности антенны с фидером.

Оглавление

Оглавление:
ГЛАВА 1. ТЕОРИТИЧЕСКИЕ СВЕДЕНИЯ О СИНФАЗНОЙ АНТЕННОЙ РЕШЕТКЕ С РАМОЧНЫМИ ИЗЛУЧАТЕЛЯМИ 2
1.1 Основные характеристики антенн 2
1.1.1 Входной импеданс 2
1.1.2 Коэффициент стоячей волны 4
1.1.3 Диаграмма направленности 5
1.1.4 Коэффициент направленного действия 7
1.1.5 Коэффициент усиления антенны 9
1.2 Теория рамочных антенн 12
1.2.1 Входное сопротивление, КПД, коэффициент усиления и диаграмма направленности классической рамочной антенны. 13
1.2.2. Размеры классической рамочной антенны. 16
1.2.3. Питание рамочных антенн. 19
1.2.4. Двойная рамочная антенна. 25
1.3 Синфазная антенная решетка 28
ГЛАВА 2 РАСЧЕТ СИНФАЗНОЙ АНТЕННОЙ РЕШЕТКИ С ЗИГЗАГООБРАЗНЫМИ ИЗЛУЧАТЕЛЯМИ 38
2.1. Расчет размеров антенной решетки. 38
2.2 Конструкция и принцип построения синфазной антенной решетки 40
ГЛАВА 3 МОДЕЛИРОВАНИЕ И ПОСТРОЕНИЕ СИНФАЗНОЙ АНТЕННОЙ РЕШЕТКИ 51

Файлы: 1 файл

Диплом.doc

— 364.00 Кб (Скачать)

 

 

Оглавление:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1. Теоритические сведения о синфазной антенной решетке с рамочными излучателями

1.1 Основные характеристики антенн

 

Для оценки и сравнения  между собой различных антенн вводится ряд характеристик. В данной главе рассматриваются параметры, характеризующие направленные свойства антенны и степень согласованности антенны с фидером.

1.2.2. Размеры классической рамочной антенны.

Как было показано в параграфе 1, рамка является видом петлевого  диполя. Отсюда можно предположить, что, так как она содержит полную длину петлевого диполя, ее периметр будет равен периметру петлевого диполя. Длина плеча петлевого диполя чуть меньше четверти длины волны из-за влияния концевой емкости, и равна примерно 0,248l - 0,249l (рис.7), в зависимости от диаметра провода, из которого выполнен диполь.

В рамочной антенне влияние концевых емкостей отсутствует (из-за отсутствия концов). Здесь наблюдается эффект уменьшения физической длины рамки из-за взаимодействия излучающих сторон. В этом случае, при использовании формы квадрата, длина рамки равна 1,01 - 1,02 длины волны (рис.8).

При использовании другой фигуры построения рамки общая длина ее будет  такой же. Но если рамка размещена  на малой высоте, и около нее  находятся посторонние предметы, то, возможно, придется подобрать длину  рамки. В любом случае ее длину  необходимо немного уменьшать. Рамку в этом случае также настраивают по минимуму КСВ в середине работы диапазона. На рис.9 приведены размеры рамочных антенн для всех любительских КВ- и части УКВ-диапазонов. При построении рамочных антенн диаметр провода не влияет на ее длину, как это происходит в дипольных антеннах. Здесь больше выражено то, что при увеличении диаметра провода возрастает широкополосность антенны. Уже при диаметре провода 1-2 мм рамочная антенна, выполненная из него, перекрывает любой любительский диапазон от 1,8 до 144 МГц, и дальнейшее увеличение диаметра провода ее полотна приводит только к увеличению веса и механической прочности антенны и лишь немного увеличивает ее КПД. Конечно, в случае использования толстого провода можно подходить к проблеме согласования менее тщательно, меньше будет проявляться и влияние посторонних предметов на рамку.

Именно из-за использования разных диаметров провода, высот подвеса  и формы рамки происходят различия в данных о параметрах рамки, приводимые различными радиолюбителями – входном сопротивлении, а, следовательно, и питании и согласовании, рабочем диапазоне частот и усилении рамки. Но оптимум будет при круглой рамке с периметром 1,01-1,02 длины волны, подвешенной вертикально на высоту не ниже четверти длины волны.

При построении рамочной антенны важно знать, что точка, лежащая напротив точек питания (рис.10) имеет нулевой потенциал.

Это может быть очень  полезно при построении рамочных антенн – например, можно заземлить полотно антенны на мачту или на траверсу (рис.10).

Такое заземление значительно  обезопасит работу в предгрозовой период, а также уберет электростатический потенциал с антенны, да и просто может быть удобным при ее построении. Если заземление центра полотна антенны сделано, ее необходимо питать только через симметрирующее устройство. Питание ее без симметрирующего устройства может снизить коэффициент усиления на 0,5-1,5 дБ, особенно это относится к рамкам, выполненным на низкочастотные диапазоны, где различные рассимметрирующие влияния наиболее велики.

Формула для расчета  периметра рамочной антенны приведена  ниже.

L= 300 К/F

где L - длина рамки  в метрах;

F - частота в МГц;

K - коэффициент удлинения.

Он равен примерно 1,01 в случае использования толстого провода – 3 мм и  более – и 1,02 в случае использования провода диаметром менее 2-1 мм. 

 

1.2.3. Питание рамочных антенн.

Правильное питание  любой антенны является необходимым для ее эффективной работы. В случае использования рамочной антенны следует помнить, что это симметричная антенна, и, следовательно, она требует использования симметрирующего устройства для ее питания. Без симметрирующего устройства возможно рассиметрирование, т.е. будет наводка переотраженной от различных предметов электромагнитной волны на внешнюю оболочку коаксиального кабеля, затем попадание этой переотраженной энергии в антенну (рис.14).

В этом случае токи, наведенные на внешней оболочке, попадая в антенну, складываются с токами, возбуждаемыми передатчиком, что приведет к увеличению КСВ и возникновению дополнительных помех, т.к. в этом случае и оболочка кабеля будет излучать. Этот эффект приведет к тому, что во время приема коаксиальный кабель будет обладать “антенным” эффектом, т.е. энергия радиоволн, наведенная на внешней оболочке, попадает на вход приемника.

Простейшее симметрирующее устройство – это 2 (на 28 МГц) - 10 (на 1,8 МГц) витков коаксиала на достаточно большом  ферритовом кольце (проницаемость не играет роли), например, от отклоняющей системы телевизоров, или 10 (на 28 МГц) - 30 (на 1,8 МГц) витков коаксиала на пластиковой бутылке из-под шампуня (рис.15, 16).

В этом случае этот ВЧ дроссель не пропустит ВЧ энергию, наведенную на внешней оболочке коаксиала в  антенну и обратно, что равносильно  симметрированию. На токи, протекающие  внутри оболочки коаксиального кабеля, дроссель не окажет влияния. Особенно балансное устройство эффективно, если по каким-либо причинам кабель оказался настроенным в резонанс на основную частоту антенны, или на частоты ее нечетных резонансов, или резонансов гармоник передатчика. В этом случае его паразитное излучение особенно велико.

Следует также учитывать, что входное сопротивление волновой рамки достигает 110-130 Ом. В случае низких горизонтальных подвесов оно падает и может достигать даже величин менее 50 Ом, но рамки, предназначенные для работы на ВЧ диапазонах и имеющие вертикальный подвес, все же имеют высокое входное сопротивление. Очевидный способ согласования в этом случае – это использование четвертьволнового трансформатора (рис.17).

В случае использования 75-омного кабеля для четвертьволнового  трансформатора (не забывайте о коэффициенте укорочения 0,66-0,68, в зависимости от типа пластиковой изоляции кабеля) и 50-омного кабеля для линии передачи получим очень хорошее согласование рамочной антенны. Длина кабеля, которая использована для симметрирующего устройства, также включается в длину четвертьволнового трансформатора (рис.18).

    

Иногда хорошие результаты дает питание рамки через симметричную пару-скрутку, используемую в проводной  телефонии. Ее волновое сопротивление лежит в пределах 60-130 Ом и очень хорошо подходит для питания рамки. Волновое сопротивление скрутки можно определить практически, если имеются приборы, измеряющие индуктивность и емкость. Для этого кусок скрутки, безразлично какой длины (но лучше 2-3 метра), подключается к измерительному прибору. Сначала ее конец размыкают и меряют емкость, затем замыкают и меряют индуктивность (рис.19).

Но часто используют и гамма-согласование (рис.20). Физически  гамма-согласование означает подключение кабеля к части антенны, имеющей для токов высокой частоты сопротивление, эквивалентное волновому сопротивлению кабеля (рис.21). На практике, часть А делают минимально возможной высоты, т.к. она уменьшает излучение антенны, а часть Б проходит параллельно антенне. Расчет гамма-согласования несложен. Высота В некритична и равна:

B = 0,2-0,4l /10

где B - высота в сантиметрах,

l - длина волны в  метрах,

например, для 40-метрового  диапазона B = (2 – 4) ´ 40/10 = 8 – 16 см,

длина Д равна:

Д = 3 l

где Д - длина в сантиметрах,

l - длина в метрах,

например, для 40 метров Д =3 ´ 40 = 120 см.

Величина максимальной емкости подстроечного конденсатора определяется по формуле:

С = 5l ,

где С - емкость конденсатора в пФ,

l - длина волны в  метрах,

например, для 40 метрового  диапазона С = 5 ´ 40 = 200 пФ.

Следует заметить, что  эти формулы эмпирические, т.е. получены опытным путем, и обратить внимание, что они оперируют с величинами длин в разных масштабах. На практике, длину согласующего устройства выбирают несколько длинней полученной расчетным путем. Это дает возможность согласовывать питание рамки конденсатором, что улучшает ее КСВ. В противном же случае согласование рамки необходимо было бы производить перемычкой П, т.к. входное сопротивление, которое будет иметь реальная рамка, не всегда точно равно ее теоретическому значению. Использование гамма-согласования позволяет использовать цельные металлические рамки, что повышает их прочность и дает некоторые удобства установки, особенно при работе на УКВ. При гамм-асогласовании уменьшаются и TVI, т.к. гамма-согласование, не являясь оптимальным для гармоник основного сигнала, шунтирует их на выходе кабеля.

Таблица величин гамма-согласования приведена на рис.22. Диаметр провода  гамм-асогласования должен быть вдвое  меньше провода полотна рамки, по крайней мере не толще ее и не тоньше жилы коаксиального кабеля питания. Конденсатор переменной емкости желательно использовать воздушный (0,5 мм зазора на 100 Вт), хотя при мощностях до 100 Вт вполне подойдет и керамический. Необходимо принять меры по его влагоизоляции.

Желательно также использовать симметричное гамм-асогласование и  использовать симметрирующее устройство (рис.23).

Настройка гамма-согласования проста, на середине рабочего диапазона  антенны с помощью конденсатора и, возможно, длины согласующего устройства добиваются минимума КСВ.

Как крайний вариант питания  рамки можно рассмотреть ее питание по двухпроводной высокоомной линии – например, типа КАТВ или “лапша”. Так как такая линия имеет волновое сопротивление 300 Ом для КАТВ и около 400-600 Ом для разных типов “лапши”, то питание антенны будет осуществляться в режиме стоячей волны. Эти линии имеют высокий КПД в режиме стоячей волны и их можно использовать в этом режиме. Кроме работы на основной частоте и нечетных гармониках рамка с таким питанием может работать и на четных гармониках – т.е. рамку для 160 метров можно согласовать для работы во всех диапазонах. Но ее согласование с выходным каскадом передатчика не будет гарантией ее успешной работы, т.к. в этом случае рамка будет работать в нерезонансном режиме, а, следовательно, иметь низкий КПД. Но как вспомогательная антенна она вполне подойдет для повседневной работы.

В любом случае при использовании  симметрирующих устройств с коаксиальным кабелем или при питании через  симметричные линии, линия передачи должна быть перпендикулярна точкам питания рамки так долго, как  это возможно.

 

1.2.4. Двойная рамочная антенна.

Двойная рамочная антенна  или антенна Харченко (по фамилии  автора, впервые описавшего ее в  л.17.1) показана на (рис.62). Периметр каждой из рамок равен длине волны, на которой работает рамка. За счет параллельного включения двух рамок суммарное входное сопротивление системы близко к 60 Ом, следовательно, антенну можно питать через коаксиальный кабель как 75 Ом, так и 50 Ом.

Коэффициенты усиления двойной рамочной антенны или, как ее еще называют, зигзагообразной антенны, достигают от 6 до 8 дБ. Возрастает и полоса пропускания такой антенны, увеличивается ее эффективность на высоких частотах. График КБВ приведен на (рис.62б).

Для дальнейшего увеличения полосы пропускания антенны используют параллельное включение нескольких антенн (рис.63), как это делают и в случае использования одиночных рамочных антенн. Из-за значительных размеров зигзагообразные антенны используют, в основном, только в УКВ диапазонах. Широкополосность антенны позволяет менее строго подходить к точному соблюдению ее размеров, как, например, в случае вибраторных директорных антенн.

Но эта широкополосность не позволяет использовать зигзагообразные антенны в качестве пассивных элементов многоэлементных директорных антенн. Для выполнения рефлектора используют лист металла, либо его эквивалент, выполненный из проводников (рис.64). С таким рефлектором коэффициент усиления зигзагообразной антенны может достигать 10-12 дБ (над изотропным излучателем).

Еще некоторого повышения  усиления можно достигнуть, установив  два директора длиной примерно 0,48 длины волны антенны (рис.65).

Несмотря на то, что  двойная рамочная антенна хорошо согласуется с коаксиальным кабелем, можно использовать и вариант питания через гамма-согласование, предложенное в л.17.2. и показанное на (рис.66).

Такой вариант питания  наиболее подходит при использовании  зигзагообразной антенны на передачу, так как в этом случае минимизировано излучение гармоник передатчика. Такое питание, кроме того, позволяет выполнить антенну цельнометаллической и, следовательно, улучшить ее механические свойства.

Включение только двух рамок  в одну систему не ограничивает использование зигзагообразных антенн в качестве антенн с высоким коэффициентом усиления. Рассмотрены принципы объединения в одну систему от 4 до 16 зигзагообразных антенн. При объединении таких антенн соответствующим образом можно получить антенные системы, обладающие громадным коэффициентом усиления в диапазоне УКВ. К сожалению, размеры таких антенных полей получаются весьма значительными.

Хотя двойные рамочные антенны и являются симметричными, симметрирование часто не используют, особенно при работе антенн в TV-диапазонах. Это связано с тем, что обычно такие антенны выполняют широкополосными, чего нельзя сказать о симметрирующих устройствах УКВ диапазонов. Также ввиду небольших размеров зигзагообразных антенн и большого удаления от них посторонних предметов, рассимметрирование проявляется не сильно и потери от него незначительны.

Для успешной работы таких  антенн их необходимо располагать как  можно выше над землей, хотя уже  при подвесе более длины волны  все параметры антенны сохраняются. Диаграмма направленности зигзагообразной антенны имеет форму восьмерки, но ее лепестки более узкие, чем для одиночной рамки.

Синфазная антенная решетка представляет собой сложную  направленную антенную систему, состоящую  из отдельных слабонаправленных  антенн, разнесенных в пространстве и расположенных таким образом, что фазы наведенных в них сигналов оказываются одинаковыми. Антенны в решетке соединяют между собой, они должны работать на общую согласованную нагрузку. Как правило, синфазную решетку собирают из одинаковых антенн, расположенных в несколько рядов и несколько этажей. Схема соединения антенн решетки должна быть составлена так, чтобы не нарушалась синфазность сигналов, поступающих от каждой антенны в нагрузку, так как только при одинаковых фазах этих сигналов они будут складываться. Кроме того, схема соединения антенн решетки одновременно должна обеспечивать их согласование с нагрузкой, так как при рассогласовании общего входного сопротивления решетки с сопротивлением нагрузки часть энергии принятого антеннами сигнала отразится от нагрузки и будет излучаться обратно в пространство, что приведет к уменьшению коэффициента усиления антенной решетки.

Информация о работе Расчет и моделирование синфазной антенной решетки