Автор: Пользователь скрыл имя, 22 Ноября 2010 в 20:31, реферат
Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров1 . "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами.
Нанотехнологии, наноматериалы, наноустройства
Г. Г. Еленин
Краткая справка об авторе: профессор факультета вычислительной математики и кибернетики Московского государственного университета им. М.В.Ломоносова, ведущий научный сотрудник Института прикладной математики им. М.В.Келдыша РАН.
Если уж стальной кубик или кристаллик соли, сложенный из одинаковых атомов, может обнаруживать интересные свойства; если вода - простые капельки, неотличимые друг от друга и покрывающие миля за милей поверхность Земли, - способна порождать волны и пену, гром прибоя и странные узоры на граните набережной; если все это, все богатство жизни вод - всего лишь свойство сгустков атомов, то сколько же еще в них скрыто возможностей? Если вместо того, чтобы выстраивать атомы по ранжиру, строй за строем, колонну за колонной, даже вместо того, чтобы сооружать из них замысловатые молекулы запаха фиалок, если вместо этого располагать их каждый раз по-новому, разнообразя их мозаику, не повторяя того, что уже было, - представляете, сколько необыкновенного, неожиданного может возникнуть в их поведении.
Р. П. Фейнман [1]
Предмет, цели и основные направления в нанотехнологии
Согласно Энциклопедическому словарю [2], технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.
Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров1 . "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.
Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.
Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений.
Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.
Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.
Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов2 , магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.
Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.
Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.
Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.
Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.
Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.
Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.
Сканирующая туннельная микроскопия
Значительную роль в неудержимом исследовании наномира сыграли, по крайней мере, два события:
- создание сканирующего туннельного микроскопа (G. Ben-nig, G. Rohrer, 1982 г.) и сканирующего атомно-силового микроскопа (G. Bennig, К. Kuatt, К. Gerber, 1986 г.) [3] (Нобелевская премия 1992 г.);
- открытие новой формы существования углерода в природе - фуллеренов (Н. Kroto, J. Health, S. O'Brien, R. Curl, R. Smal-ley, 1985 r.) [4] (Нобелевская премия 1996 г.).
Новые микроскопы позволили наблюдать атомно-молекулярную структуру поверхности монокристаллов в нанометровом диапазоне размеров. Наилучшее пространственное разрешение приборов составляет сотую долю нанометра по нормали к поверхности. Действие сканирующего туннельного микроскопа основано на туннелировании электронов через вакуумный барьер. Высокая разрешающая способность обусловлена тем, что туннельный ток изменяется на три порядка при изменении ширины барьера на размеры атома. Теория квантового эффекта туннелирования заложена Г.А. Гамовым в 1928 г. в работах по a-распаду [5].
С помощью различных сканирующих микроскопов в настоящее время наблюдают за атомной структурой поверхностей монокристаллов металлов, полупроводников, высокотемпературных сверхпроводников, органических молекул, биологических объектов. На рис. 1 показана реконструированная поверхность нижней террасы грани (100) монокристалла кремния [6]. Серые кружки являются образами атомов кремния. Темные области являются локальными нанометровыми дефектами. На рис. 2 приведена атомная структура чистой поверхности грани (110) серебра (левая рамка) и той же поверхности, покрытой атомами кислорода (правая рамка) [7]. Оказалось, что кислород адсорбируется не хаотично, а образует достаточно длинные цепочки вдоль определенного кристаллографического направления. Наличие сдвоенных и одинарных цепочек свидетельствует о двух формах кислорода.
Эти формы играют важную роль в селективном окислении углеводородов, например этилена. На рис. 3 можно видеть наноструктуру высокотемпературного сверхпроводника Bi2Sr2CaCu2O2 [8]. В левой рамке рис. 4 отчетливо видны кольца молекул бензола (С6Н6) [9]. В правой рамке показаны СН2 -цепочки полиэтилена [10]. В работе [11] представлена последовательность кадров лабораторного фильма о проникновении вируса в живую клетку.
Новые микроскопы полезны не только при изучении атомно-молекулярной структуры вещества. Они оказались пригодными для конструирования наноструктур. С помощью определенных движений острием микроскопа удается создавать атомные структуры. На рис, 5 представлены этапы создания надписи "IBM" из отдельных атомов ксенона на грани (110) монокристалла никеля [12]. Движения острия при создании наноструктур из отдельных атомов напоминают приемы хоккеиста при продвижении шайбы клюшкой. Представляет интерес создание компьютерных алгоритмов, устанавливающих нетривиальную связь между движениями острия и перемещениями манипулируемых атомов на основе соответствующих математических моделей. Модели и алгоритмы необходимы для разработки автоматических "сборщиков" наноконструкций.
Рис. 4: а - С6Н6; b - СН2-СН2
Рис. 5. Xe/Ni (110)
Наноматериалы
Фуллерены, как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли [4, 13]. Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С60. Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч (рис. 6). В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства [14].
Фуллериты. Молекулы С60 , в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями [15]. В этом кристалле имеются октаэдрические и тетраэдри-ческие полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (¦ = К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60 [16]. Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллери-тов проводится, в частности, в Институте им. Макса Планка в Штутгарте [17]. Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства [18]. Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений.
Углеродные нанотрубки. Из углерода можно получить молекулы с гигантским числом атомов [19]. Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон (рис. 7). На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из
Рис. 7. Нехиральные нанотрубки: а - С(n', n) - металл [50, 52];
Ь-С(n, 0):mod (n, 3) = 0 - полуметалл
mod (n, 3)!= 0 - полупроводник.
Рис. 8. Изогнутая трубка [56]
атомов углерода, в трехмерном пространстве. Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности (m, n)3 . Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну. Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве (рис. 8). Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки [20]. Для производства нанотрубок используются специальные катализаторы [21, 22].
В чем уникальность новых материалов? Остановимся лишь на трех важных свойствах.
Сверхпрочные материалы. Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра [23].
Высокопроводящие материалы. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве,
Нанокластеры
К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn4O(BDC)3(DMF)8(C6H5Cl)4 [24]. Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn12O12(CH3COO)16(H2O)4 [25]. Эта изящная конструкция состоит из четырех ионов Мn4+ со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn3+ со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn4+ и Мn3+ приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn12 друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров [26-28]. Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса [29, 30]. Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр.
Информация о работе Нанотехнологии, наноматериалы, наноустройства