Автор: Пользователь скрыл имя, 28 Июля 2014 в 15:59, контрольная работа
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).
В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и т.д. Мы будем рассматривать механические колебания. Колебания, происходящие при отсутствии трения и внешних сил, называются собственными; их частота зависит только от свойств системы.
1. Механические колебания 2
2. Химически опасные объекты 10
3. Список использованных источников 20
Содержание
1. Механические колебания
2. Химически опасные объекты 10
3. Список использованных
источников 20
1. Механические колебания
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).
В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и т.д. Мы будем рассматривать механические колебания. Колебания, происходящие при отсутствии трения и внешних сил, называются собственными; их частота зависит только от свойств системы.
Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.
Дифференциальное уравнение гармонического колебания
Рассмотрим простейшую колебательную систему: шарик массой m подвешен на пружине.
В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F1 + F). Изменение упругой силы по закону Гука1 пропорционально изменению длины пружины или смещению шарика х:
F=-kx, (1)
где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.
Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.
В нашем примере сила по своей природе упругая. Может случиться, что сила иного происхождения обнаруживает такую же закономерность, то есть оказывается равной - kx. Силы такого вида, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.
Уравнение второго закона Ньютона2 для шарика имеет вид:
, или .
Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату некоторой величины w0, т.е. мы можем ввести обозначение . Тогда получим
(2)
Таким образом, движение шарика под действием силы вида (1) описывается линейным однородным дифференциальным уравнением второго порядка.
Легко убедиться подстановкой, что решение уравнения имеет вид:
(3)
где (w0 t + a0) = a — фаза колебаний; a0 — начальная фаза при t = 0; w0 — круговая частота колебаний; A — их амплитуда.
Итак, смещение x изменяется со временем по закону косинуса.
Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.
График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:
.
Для пружинного маятника получаем:
.
Круговая частота связана с обычной n соотношением: .
Энергия при гармоническом колебании
Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:
, (4)
где k = m w02.
Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):
EП. (5)
Складывая (4) и (5), с учетом соотношения , получим:
E = EK + EП = . (6)
Таким образом, полная энергия гармонического колебания остается постоянной в отсутствие сил трения, во время колебательного процесса кинетическая энергия переходит в потенциальную и наоборот.
Затухающие колебания
Колебания, происходящие в системе при отсутствии внешних сил (но при наличии потерь на трение или излучение), называются свободными. Частота свободных колебаний зависит от свойств системы и интенсивности потерь.
Наличие трения приводит к затухающим колебаниям. Колебания с убывающей амплитудой называются затухающими.
Допустим, что на систему, кроме квазиупругой силы, действуют силы сопротивления среды (трения), тогда второй закон Ньютона имеет вид:
. (7)
Ограничимся рассмотрением малых колебаний, тогда и скорость системы будет малой, а при небольших скоростях сила сопротивления пропорциональна величине скорости:
, (8)
где r - коэффициент сопротивления среды. Знак " - " обусловлен тем, что Fтр и V имеют противоположные направления.
Подставим (8) в (7). Тогда
или
Обозначим
,
где b — коэффициент затухания, w0 — круговая частота собственных колебаний. Тогда
(9)
Решение этого уравнения существенно зависит от знака разности: w2 = w02 -b2, где w — круговая частота затухающих колебаний. При условии w02 -b2 > 0, w является действительной величиной и решение (3) будет следующим:
(10)
График этой функции дан на рисунке.
Рис. 2. Затухающие колебания.
Пунктиром изображено изменение амплитуды: A = ±A0e-bt.
Период затухающих колебаний зависит от коэффициента трения и равен:
(11)
При незначительном сопротивлении среды (b2 << w2) период практически равен . С ростом коэффициента затухания период колебаний увеличивается.
Из формулы, выражающей закон убывания амплитуды колебаний, можно убедиться, что отношение амплитуд, отделенных друг от друга интервалом в один период (Т), остается постоянным в течение всего процесса затухания. Действительно, амплитуды колебаний, отделенные интервалом в один период, выражаются так:
.
Отношение этих амплитуд равно:
. (12)
Это отношение называют декрементом затухания.
В качестве меры затухания часто берут величину натурального логарифма
этого отношения:
Эта величина носит название логарифмического декремента затухания за период.
При сильном затухании b 2 > w02 из формулы (11) следует, что период колебания является мнимой величиной. Движение при этом носит апериодический (непериодический) характер - выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий.
Вынужденные колебания. Резонанс
Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающей силы). Пусть вынуждающая сила изменяется со временем по гармоническому закону: f = F0 cosW t , где F0 - амплитуда, W - круговая частота вынуждающей силы.
При составлении уравнения движения нужно учесть, кроме вынуждающей силы, также те силы, которые действуют в системе при свободных колебаниях, то есть квазиупругую силу и силу сопротивления среды. Тогда уравнение движения (второй закон Ньютона) запишется следующим образом:
.
Разделив это уравнение на m и перенеся члены с dx и d2x в левую часть получим неоднородное линейное дифференциальное уравнение второго порядка:
где — коэффициент затухания, — собственная частота колебаний системы. Решением этого уравнения будет:
(13)
Явление резкого увеличения амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колеблющегося тела называется резонансом, происходящие при этом колебания - резонансными, а их частота w рез — резонансной частотой колебаний.
Расчет дает значение резонансной частоты:
wрез =
Если b очень мало, то wp » w0 . Подставив wрез вместо W в (13), получим максимальную величину амплитуды колебаний при резонансе:
Арез = . (14)
Чтобы определить резонансную частоту wрез, нужно найти максимум функции (2.13) или, что то же самое, минимум выражения, стоящего под корнем в знаменателе. Продифференцировав это выражение по W и приравняв нулю, мы получим условие, определяющее wрез:
-4(w02 -W 2)W + 8b 2W = 0.
Это уравнение имеет три решения: W = 0 и .
Решение, равное нулю, соответствует максимуму знаменателя. Из остальных двух решений отрицательное должно быть отброшено, как не имеющее физического смысла (частота не может быть отрицательной). Таким образом, для резонансной частоты получается одно значение: wрез = . Подставив это значение частоты в (13), получим выражение для амплитуды при резонансе:
Арез =
Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (частоты колебаний) показана графически на рисунке: b1 < b2 <b3
Это резонансные кривые.
Рис. 3. Резонансные кривые.
2. Химически опасные объекты
Многие аварии на потенциально химически опасных объектах нельзя предвидеть заранее в достаточной мере, можно только к ним подготовиться, зная, что эти объекты расположены рядом, и смягчить последствия. Основными превентивными мерами в этом случае являются следующие: анализ и установление мест возможных аварий, прогнозирование очагов поражения, потерь и ущерба на предприятии, обучение персонала действиям при чрезвычайных ситуациях
Химически опасный объект – это объект, на котором хранят, перерабатывают и используют или транспортируют аварийно химически опасные вещества, при аварии на котором или разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.
Химической аварией называют аварию на химически опасном объекте, сопровождающуюся проливом или выбросом аварийно химически опасных веществ, способную привести к гибели или химическому заражению людей, пищевого сырья и кормов, сельскохозяйственных животных и растений или к химическому заражению окружающей природной среды.
Химическое заражение – это распространение аварийно химически опасных веществ в окружающей природной среде в концентрациях или количествах, создающих угрозу для населения, сельскохозяйственных животных и растений в течение определённого времени.
Наибольшую опасность в плане возникновения химических аварий несут предприятия, выпускающие химические вещества, склады и арсеналы их хранения, а также предприятия, в технологическом процессе которых используются такие вещества. В настоящее время в мире производится более 1 млн. наименований химических веществ, 600 тыс. из которых широко используются в промышленности и народном хозяйстве. Рост химических производств увеличил вероятность аварий, связанных с неконтролируемым выбросом химических веществ в окружающую среду.
К химически опасным объектам (ХОО) относятся:
предприятия химических отраслей промышленности, а также отдельные установки (агрегаты) и цеха, производящие и потребляющие аварийно химически опасные вещества (АХОВ);
заводы (комплексы) по переработке нефтегазового сырья;
железнодорожные станции, порты, терминалы и склады на конечных (промежуточных) пунктах перемещения АХОВ;
производства других отраслей промышленности, использующие АХОВ;
транспортные средства (контейнеры и наливные поезда, автоцистерны, речные и морские танкеры, трубопроводы и др.).
В связи с ростом химического производства увеличивается и вероятность аварий, связанных с неконтролируемым выбросом АХОВ в окружающую среду, которые наносят непоправимый ущерб.
Аварийные ситуации классифицируются по двум основным группам:
аварии на производственных площадках;
аварии на транспортных коммуникациях (в основном на железных дорогах).
На площадках наибольшая потенциальная опасность аварийных ситуаций с АХОВ может быть на складах и наливных станциях, где сосредоточены сотни, часто – тысячи тонн основных АХОВ.
Аварийные ситуации при транспортировке АХОВ сопряжены с более высокой степенью опасности, т.к. масштабы перевозки этих веществ являются весьма большими. Например, только жидкого хлора одновременно на железных дорогах страны перевозится более 700 цистерн, причем часто в пути находятся одновременно около 100 цистерн, содержащих до 5 000 т сжиженного хлора. Как правило, в сборные маршруты может входить от двух до восьми и более цистерн. Грузоподъемность железнодорожных цистерн: для хлора – 47, 55, 57 т; для аммиака – 30, 45 т; для соляной кислоты – 52, 59 т; для фтора – 20, 25 т.
Наиболее характерными причинами аварийных выбросов АХОВ на железных дорогах являются: