Лазерные технологии

Автор: Пользователь скрыл имя, 02 Июня 2015 в 00:57, реферат

Краткое описание

В этой работе рассматривается понятие лазера и то как он устроен.
Первым квантовым генератором был рубиновый твердотельный лазер.
Лазеры используется во многих областях человеческой деятельности: машиност-роении, сельском хозяйстве, медицине, связи, для обработки и хранения информации, измерения расстояний, времени и скорости, в научных иссле¬дованиях.
Лазеры позволили осуществить новый метод получения объемных и цветных изображений, названный голографией.

Оглавление

Введение 3
Структура лазера 4
Краткий исторический обзор 5
Особенности лазерного излучения 6
Лазерная технология 9
Газовые лазеры 11
Применение лазеров в военной технике (лазерная локация) 13
Заключение 15
Список литературы 16

Файлы: 1 файл

Лазерные технологии реферат.docx

— 51.57 Кб (Скачать)

Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области

Международный университет природы, общества и человека «Дубна»

 

 

ИНСТИТУТ СИСТЕМНОГО АНАЛИЗА И УПРАВЛЕНИЯ

Кафедра «Персональной электроники»

 

 

 

 

 

 

 

 

Реферат

По дисциплине «Введение в специальность»

На тему: «Лазерные технологии»

 

 

 

 

 

        Выполнил:

студент(кА) группы 1141

 Дударев А. О.

Проверил:

д.т.н., проф. Романов Ю. И.

 

 

 

 

Дубна, 2014

 

Оглавление

Введение 3

Структура лазера 4

Краткий исторический обзор 5

Особенности лазерного излучения 6

Лазерная технология 9

Газовые лазеры 11

Применение лазеров в военной технике (лазерная локация) 13

Заключение 15

Список литературы 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Слово “лазер” представляет собой аббревиатуру английской фразы “Light Amplification by Stimulated Emission of Radiation”, переводимой как усиление света в результате вынужденного (индуцированного) излучения. Гипотеза о существовании индуцированного излучения была высказана в 1917 г. А Эйнштейном. Советские ученые Н.Г. Басов и А.М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длинной волны 1,27 см.

Первым квантовым генератором был рубиновый твердотельный лазер.

Лазеры используется во многих областях человеческой деятельности: машиностроении, сельском хозяйстве, медицине, связи, для обработки и хранения информации, измерения расстояний, времени и скорости, в научных исследованиях.

Лазеры позволили осуществить новый метод получения объемных и цветных изображений, названный голографией.

Лазерные системы навигации и обеспечения безопасности полетов. Одним из основных элементов инерциальных систем навигации, широко используемых в авиации, являются гироскопы, которые в основном и определяют точность системы. Лазерные гироскопы обладают достаточно высокой точностью, большим диапазоном измерения угловых скоростей, малым собственным дрейфом, невосприимчивостью к линейным перегрузкам. Лазеры успешно применяются как измерители скорости полета (воздушной и путевой), высотомеры. Лазерные курсоглиссадные системы обеспечивают безопасность полетов, связанную с увеличением точности систем посадки, снижения ограничений по метеоусловиям, обеспечением больших удобств работы экипажа при выполнении такого ответственного участка полета, как посадка.

 

Структура лазера

Лазер - квантовый генератор, источник когерентного монохроматического электромагнитного излучения оптического диапазона. Обычно состоит из трёх основных элементов:

  • Источник энергии (механизм «накачки» лазера).
  • Рабочее тело лазера.
  • Система зеркал («оптический резонатор»).

Источник энергии:

импульсная лампа - импульсный источник света высокой интенсивности, в котором используется свечение плазмы, возникающее, например, при конденсированном искровом разряде в инертном газе или при сжигании металлической фольги в кислороде.

В лазерах используются следующие рабочие тела:

  • Жидкость, например в лазерах на красителях. Состоят из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны.
  • Газы, например, углекислый газ, аргон, криптон или смеси, такие как в гелий-неоновых лазерах. Такие лазеры чаще всего накачиваются электрическими разрядами.
  • Твёрдые тела, такие как кристаллы и стекла. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюмо-иттриевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером.
  • Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.

Оптический резонатор:

Простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается.

Для выхода излучения одно из зеркал делается полупрозрачным.

 

Краткий исторический обзор

Первые расчеты, касающиеся возможности создания лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и Херриотт создали гелий-неоновый лазер, работающий в инфракрасной области на ряде линий в районе 1 мк. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые лазеры, работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода.

Следующим наиболее важным этапом в развитии лазеров было, по-видимому, открытие Беллом в конце 1963 г. лазера, работающего на ионах ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных надежд на получение больших мощностей в непрерывном режиме в красной и зеленой областях спектра, это открытие указало новые режимы разряда, при которых могут быть обнаружены лазерные переходы в видимой области спектра.

Тем временем, технические усовершенствования лазеров быстро расширялись, в результате чего исчезли многие “колдовские” ухищрения первых конструкций гелий-неоновых и других газовых лазеров. Исследования таких лазеров, начатые Беннетом, продолжались до тех пор, пока не был создан гелий-неоновый лазер, который можно установить на обычном столе с полной уверенностью в том, что лазер будет функционировать так, как это ожидалось при его создании. Аргоновый ионный лазер не исследован столь же хорошо; однако большое число оригинальных работ Гордона Бриджеса и сотр. позволяет предвидеть в разумных пределах возможные параметры такого лазера.

На протяжении последнего года появился ряд интересных работ, посвященных газовым лазерам, однако еще слишком рано определять их относительную ценность. Ко всеобщему удивлению наиболее важным достижением явилось открытие Пейтелом генерации вынужденного излучения в СО2 на полосе 1,6 мк с высоким к.п.д. выходная мощность в этих лазерах может быть доведена до сотен ватт, что обещает открыть целую новую область лазерных применений.

 

Особенности лазерного излучения

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера.

Основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы).

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

В 1955 г. одновременно и независимо Н.Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США был предложен принцип создания первого в мире генератора квантов электромагнитного излучения на среде с инверсной населенностью, в котором вынужденное испускание в результате использования обратной связи приводило к генерации чрезвычайно монохроматического излучения.

Спустя несколько лет, в 1960г., американским физиком Т. Мейманом был запущен первый квантовый генератор оптического диапазона - лазер, в котором обратная связь осуществлялась с помощью описанного выше оптического резонатора, а инверсная населенность возбуждалась в кристаллах рубина, облучаемых излучением ксеноновой лампы-вспышки. Рубиновый кристалл представляет собой кристалл оксида алюминия АL2О3 с небольшой добавкой =0,05% хрома. При добавлении атомов хрома прозрачные кристаллы рубина приобретают розовый цвет и поглощают излучение в двух полосах ближней ультрафиолетовой области спектра. Всего кристаллами рубина поглощается около 15% света лампы-вспышки. При поглощении света ионами хрома происходит переход ионов в возбужденное состояние. В результате внутренних процессов, возбужденные ионы хрома переходят в основное состояние не сразу, а через два возбужденных уровня. На этих уровнях происходит накопление ионов, и при достаточно мощной вспышке ксеноновой лампы возникает инверсная населенность между промежуточными уровнями и основным уровнем ионов хрома.

Торцы рубинового стержня полируют, покрывают отражающими интерференционными пленками, выдерживая при этом строгую параллельность торцов друг другу.

При возникновении инверсии населенностей уровней ионов хрома в рубине происходит лавинное нарастание числа вынужденно испущеных фотонов, и обратной связи на оптическом резонаторе, образованном зеркалами на торцах рубинового стержня, обеспечивает формирование узконаправленного луча красного света. Длительность лазерного импульса=0.0001 с, немного короче длительности вспышки ксеноновой лампы. Энергия импульса рубинового лазера около 1ДЖ.

С помощью механической системы (вращающееся зеркало) или быстродействующего электрического затвора можно “включить “ обратную связь (настроить одно из зеркал) в момент достижения максимальной инверсии населенностей и, следовательно, максимального усиления активной среды. В этом случае мощность индуцированного излучения будет чрезвычайно велика и инверсия населенности “снимется” вынужденным излучением за очень короткое время.

В этом режиме модулированной добротности резонатора излучается гигантский импульс лазерного излучения. Полная энергия этого импульса останется приблизительно на том же уровне, что и в режиме “свободной генерации”, но вследствие сокращения в сотни раз длительности импульса, также в сотни раз возрастает мощность излучения, достигая значения =100000000Вт.

Рассмотрим некоторые уникальные свойства лазерного излучения.

При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать, прежде всего, в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 1*10000000-1*100000000 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.

Лазеры различаются:

  • способом создания в среде инверсной населенности, или, иначе говоря, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.);
  • рабочей средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора;
  • режимом работы (импульсный, непрерывный).

Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.

 

Лазерная технология

Лазеры нашли широкое применение, и в частности используются в промышленности для различных видов обработки материалов: металлов, бетона, стекла, тканей, кожи и т. п.

Лазерные технологические процессы можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой фокусировки лазерного луча и точного дозирования энергии, как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры сравнительно невысокой средней мощности: это газовые лазеры импульсно-периодического действия, лазеры на кристаллах иттрий-алюминиевого граната с примесью неодима. С помощью последних были разработаны технология сверления тонких отверстий (диаметром 1 - 10 мкм и глубиной до 10 -100 мкм) в рубиновых и алмазных камнях для часовой промышленности и технология изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.

Информация о работе Лазерные технологии