Автор: Пользователь скрыл имя, 25 Ноября 2015 в 18:33, реферат
Теория полета (аэродинамика и динамика полета) – наука фундаментальная и строгая, опирающаяся на математический аппарат. Но, как и о всякой науке, о ней можно говорить на кухне, опираясь лишь на интеллект соответствующего уровня. К сожалению, и сегодня появляются "ученые", пытающиеся на кухонном уровне объяснить основные законы природы, в том числе и аэродинамики и динамики полета. Но когда с помощью этих объяснений пытались решить серьезные задачи в авиации, это приводило и приводит к плачевным результатам: после отрыва от Земли первые самолеты "вдруг" круто пикировали в Землю; при большой скорости на самолетах с первыми турбореактивными двигателями (ТРД) "вдруг" появлялась тряска и самолет рассыпался; преодоление звукового барьера долго не давалось; перегруженные самолеты не могут завершить взлет и т.п.
Свойство вектора S рассмотрим с помощью представления бесконечно малой частицы в виде тетраэдра с ребрами, параллельными осям координат (рис. 2). Площади граней такого тетраэдра равны S, S×cos( ,x), S×cos( ,y), S×cos( ,z).
Массовые силы будем считать постоянными во всем объеме W = hS/3 бесконечно малой частицы, а поверхностные силы 1, 2, 3, S постоянными на своих гранях. Это позволит применить к частице начало Даламбера из теоретической механики:
откуда, сократив на S, и перейдя к пределу при h ® 0, получаем инвариантное к выбору площадки равенство:
. (2.1)
Это означает, что существует некоторый объект P, компонентами
которого можно рассматривать векторы , или даже элементы матрицы (pij) – матрицы из компонент векторов . Объект P с компонентами pij называется тензором внутренних напряжений.
Равенство (2.1) позволяет применить теорему Остроградского-Гаусса (1.10) к расчету поверхностных сил:
(2.2)
Кроме сил на каждую частицу жидкости могут действовать и моменты. Примером может служить момент магнитного поля Земли, действующий на каждый элемент стрелки компаса. Такой момент, который действует на элемент массы Dm, будем обозначать . Его принято называть массовой парой (массовым моментом). Размерность совпадает с размерностью квадрата скорости.
Момент, который действует на элемент поверхности DS, будем обозначать . Он называется поверхностной парой (поверхностным моментом) и имеет размерность силы, деленной на длину.
2.2. Уравнения движения сплошной среды
В теоретической механике известно уравнение количества движения материальной точки:
где в правой части равенства стоит сумма всех действующих на нее сил. Обобщим это уравнение на конечный объем сплошной среды, состоящей из частиц, как системы материальных точек, подверженных действию рассмотренных в разделе 2.1 объемных и поверхностных сил:
. (2.3)
Уравнение количества движения конечного объема сплошной среды (2.3), являющееся аналогом второго закона Ньютона, имеет такое же фундаментальное значение для описания любых движений сплошной среды. Оно справедливо и для разрывных движений, и для ударных процессов, характеризующихся разрывными функциями координат и времени (но не нарушениями гипотезы сплошности – см. раздел 1.1).
Заменив последнее слагаемое в (2.3) с помощью (2.2), получим:
левую часть которого преобразуем с помощью (1.12):
Это позволит записать равенство подынтегральных выражений для элементарного объема:
Левую часть этого уравнения в свою очередь можно преобразовать с помощью уравнения неразрывности (1.16):
Таким образом, получено основное дифференциальное уравнение движения сплошной среды:
, (2.4)
или в проекциях на оси декартовой системы координат:
(2.5)
где – компоненты массовой силы .
Отметим, что уравнения (2.4) и (2.5) получены при следующих предположениях:
– непрерывность и дифференцируемость векторов напряжений 1, 2, 3,
– неразрывность среды,
– непрерывность характеристик движения.
Итак, для описания движения сплошной среды имеются: скалярное уравнение неразрывности (1.16) и одно векторное (2.4) или три скалярных (2.5) уравнения движения. В этой системе уравнений при заданных внешних массовых силах (Fx,Fy,Fz) неизвестными функциями пространственных координат и времени являются: плотность r, скорость (Vx,Vy,Vz) и три вектора напряжений 1(p11,p21,p31), 2(p12,p22,p32), 3(p13,p23,p33) со своими девятью координатами. Так как число уравнений меньше числа неизвестных, то система незамкнута. Для ее замыкания необходимо использовать дополнительные соотношения между неизвестными. Такие соотношения может дать модель конкретной среды.
2.3. Виды сплошной среды
Экспериментальные данные показывают, что большинство сред обладает специфическим свойством: отсутствием или малостью касательных напряжений pSt, т.е. вектор S можно считать перпендикулярным любой площадке взаимодействия dS и равным нормальному напряжению pSn. Среду, обладающую таким свойством называют идеальной жидкостью или идеальным газом. Близки к таковым обычные воздух и вода при малых скоростях.
Указанное свойство для любой площадки с нормалью можно выразить соотношением, вытекающим из (2.1):
где –p – общее значение скалярных произведений. Величину p называют давлением. Его особенность заключается в независимости от направления рассматриваемого взаимодействия частиц. При p > 0 среда, как показывает опыт, находится в сжатом состоянии, поэтому и использован знак минус. Таким образом, матрица компонент тензора внутренних напряжений в идеальной жидкости (газе) имеет вид:
, (2.6)
и тензор P целиком определяется скаляром p.
Понятно, что идеальная жидкость не единственно возможная модель сплошной среды, позволяющая определить компоненты тензора внутренних напряжений. Можно, например, рассматривать его компоненты как функции от деформации частицы: в этом случае среда называется упругой. В частном случае линейности это соотношение приобретает вид закона Гука. Изучением таких сред занимается теория упругости.
Особое место в механике сплошной среды занимает модель вязкой жидкости, предполагающая связь тензора внутренних напряжений с частными производными скорости по координатам. Имеется в виду эффект "трения" слоев вязкой жидкости между собой при наличии разности их поступательных скоростей. В частном случае линейности связь представляется в виде закона Навье-Стокса (или обобщенного закона вязкости Ньютона):
, (2.7)
где – элементы единичной матрицы (с единицами на главной диагонали и нулями на всех остальных местах), матрица размерности 3´3, обозначенная emn, называется тензором скоростей деформации, а тензорный коэффициент линейности Bijmn описывает свойства вязкой жидкости.
Если свойства среды в разных направлениях одинаковы, то она называется изотропной, в противном случае – анизотропной. В изотропной среде Bijmn представляется симметричной матрицей размерности 3´3´3´3, одинаковой в любой системе координат. Можно показать [1], что в этом случае все компоненты тензора Bijmn выражаются всего лишь через два независимых параметра l и m, называемых коэффициентами Ламе, поэтому закон Навье-Стокса для вязкой изотропной жидкости имеет вид:
. (2.8)
В теории вязкой жидкости m называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости, – кинематическим коэффициентом вязкости (коэффициентом линейной вязкости), – вторым коэффициентом вязкости (коэффициентом объемной вязкости). Размерность m, l и z в СИ: .
Нетрудно видеть, что упомянутые модели для идеальной и вязкой жидкости вводят еще одну неизвестную – давление p. Т.е. для замыкания системы уравнений движения сплошной среды оказывается необходимым еще одно скалярное соотношение. В этом качестве чаще всего применяются уравнения, представляющие различные гипотезы связи плотности и давления:
Если такое соотношение можно ввести, то жидкость называется баротропной. Выделяются следующие частные случаи.
1. – случай несжимаемой жидкости, или .
2. , где C – постоянная, – случай изотермического процесса.
3. , где C и n – постоянные, – случай политропического процесса, n называется показателем политропы.
4. – уравнение Клапейрона-Менделеева для совершенного газа, где – универсальная газовая постоянная, – масса вещества в кг, численно равная молекулярному весу, T – абсолютная температура, которую необходимо задавать еще одним дополнительным соотношением.