Автор: Пользователь скрыл имя, 22 Ноября 2012 в 17:27, реферат
Тема моего реферата «Электрические токи в атмосфере и грозы». Данную тему я выбрала потому, что эти явления интересны мне и я бы хотела подробнее узнать и изучит их.
В своей работе я расскажу о таких явлениях как атмосферное электричество. А о таких явлениях как гроза и молния и полярное сияние расскажу подробнее, с использованием иллюстраций.
1. Введение…………………………………………………………………………..3
2. Атмосферное электричество, история развития науки об атмосферном электричестве……………………………………………………………………..3
3. Электрическое поле атмосферы…………………………………………………5
4. Электрическая проводимость атмосферы………………………………………6
5. Электрический ток в атмосфере и «Генераторы» атмосферного
электричества…………………………………………………………………………6
6. Гроза. Объяснение явления и механизм образования. Погодные явления под грозами…………………………………………………………………………….8
7. Молния и ее образование……………………………………………………….15
8. Полярное сияние…………………………………………………………………20
9. Список литературы………………………………………………………………23
Министерство образования
и науки Российской Федерации
Федеральное государственное автономное
образовательное учреждение
высшего профессионального образования
«Российский государственный профессионально-педагогический
университет»
Институт социологии и права
Кафедра права
Реферат
по дисциплине
«Физика»
На тему: «Электрические токи в атмосфере и грозы».
Екатеринбург 2011
Соджержание:
электричества……………………………………………
Введение.
Тема моего реферата «Электрические токи в атмосфере и грозы». Данную тему я выбрала потому, что эти явления интересны мне и я бы хотела подробнее узнать и изучит их.
В своей работе я расскажу о таких явлениях как атмосферное электричество. А о таких явлениях как гроза и молния и полярное сияние расскажу подробнее, с использованием иллюстраций.
Атмосферное электричество
Атмосферное электричество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическая проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.
Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.
Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
В приземном слое атмосферы небольшая часть молекул подвергается ионизации под воздействием космических лучей, излучения радиоактивных горных пород и продуктов распада радия (в основном радона) в самом воздухе. В процессе ионизации атом теряет электрон и приобретает положительный заряд. Свободный электрон быстро соединяется с другим атомом, образуя отрицательно заряженный ион. Такие парные положительные и отрицательные ионы имеют молекулярные размеры. Молекулы в атмосфере стремятся группироваться вокруг этих ионов. Несколько молекул, объединившихся с ионом, образуют комплекс, называемый обычно «легким ионом».
В атмосфере присутствуют также комплексы молекул, известные в метеорологии под названием ядер конденсации, вокруг которых при насыщении воздуха влагой начинается процесс конденсации. Эти ядра представляют собой частички соли и пыли, а также загрязняющих веществ, поступающих в воздух от промышленных и других источников. Легкие ионы часто присоединяются к таким ядрам, образуя «тяжелые ионы».
Под воздействием электрического поля легкие и тяжелые ионы перемещаются из одних областей атмосферы в другие, перенося электрические заряды. Хотя обычно атмосфера не считается электропроводной средой, она все же обладает небольшой проводимостью. Поэтому оставленное на воздухе заряженное тело медленно утрачивает свой заряд.
Проводимость атмосферы возраст
Известно, что между поверхностью Земли и «уровнем компенсации» постоянно существует разность потенциалов в несколько сотен киловольт, т.е. постоянное электрическое поле. Выяснилось, что разность потенциалов между некоторой точкой, находящейся в воздухе на высоте нескольких метров, и поверхностью Земли очень велика – более 100 В. Атмосфера имеет положительный заряд, а земная поверхность заряжена отрицательно. Поскольку электрическое поле – область, в каждой точке которой имеется некоторое значение потенциала, можно говорить о градиенте потенциала. В ясную погоду в пределах нижних нескольких метров напряженность электрического поля атмосферы почти постоянна.
Из-за различий электропроводности воздуха в приземном слое градиент потенциала подвержен суточным колебаниям, ход которых существенно меняется от места к месту. При отсутствии локальных источников загрязнения воздуха – над океанами, высоко в горах или в полярных районах – суточный ход градиента потенциала в ясную погоду одинаков. Величина градиента зависит от всемирного, или среднего гринвичского, времени (UТ) и достигает максимума в 19 ч.
Э.Эплтон предположил, что этот максимум электропроводности, вероятно, совпадает с наибольшей грозовой активностью в планетарном масштабе. Разряды молний во время гроз переносят отрицательный заряд к поверхности Земли, поскольку основания наиболее активных кучево-дождевых грозовых облаков обладают значительным отрицательным зарядом. Верхние части грозовых облаков обладают положительным зарядом, который, по расчетам Хольцера и Саксона, во время гроз стекает с их вершин. Без постоянного пополнения заряд земной поверхности был бы нейтрализован за счет проводимости атмосферы. Предположение о том, что разность потенциалов между земной поверхностью и «уровнем компенсации» поддерживается благодаря грозам, подкрепляется статистическими данными. Например, максимальное число гроз отмечается в долине р. Амазонки. Чаще всего грозы бывают там в конце дня, т.е. ок. 19 ч среднего гринвичского времени, когда градиент потенциала максимален в любой точке земного шара. Более того, сезонные вариации формы кривых суточного хода градиента потенциала тоже находятся в полном соответствии с данными о глобальном распределении гроз. Некоторые исследователи утверждают, что источник электрического поля Земли, возможно, имеет внешнее происхождение, поскольку электрические поля, как полагают, существуют в ионосфере и магнитосфере. Этим обстоятельством, вероятно, объясняется возникновение очень узких удлиненных форм полярных сияний, похожих на кулисы и арки.
Благодаря наличию градиента потенциала и проводимости атмосферы между «уровнем компенсации» и поверхностью Земли начинают двигаться заряженные частицы: положительно заряженные ионы – по направлению к земной поверхности, а отрицательно заряженные – вверх от нее. Сила этого тока составляет около 1800 А. Хотя эта величина кажется большой, необходимо помнить, что она распределяется по всей поверхности Земли. Сила тока в столбе воздуха с площадью основания 1 м2 составляет лишь 4ґ10–12 А. С другой стороны, сила тока при разряде молнии может достигать нескольких ампер, хотя, конечно, такой разряд имеет малую продолжительность – от долей секунды до целой секунды или немного больше при повторных разрядах. Электрическая проводимость атмосферы. Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2*сек-1*в-1.
Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
Электрическое поле атмосферы.
В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью Е, в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды Е с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300—3000 м, где скапливаются аэрозоли, Е может с высотой возрастать. Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание Е связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой. Разность потенциалов между Землёй и ионосферой составляет 200—250 кв.
Напряжённость электрического поля Е меняется во времени. Наряду с локальными суточными и годовыми вариациями Е отмечаются синхронные для всех пунктов суточные и годовые вариации Е — т.н. унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные — с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.
Электрическая проводимость атмосферы.
Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью l, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость l зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в l вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.
Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем l = (1 - 2)·10-18 ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км l достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.
Основные ионизаторы
атмосферы: 1) космические лучи, действующие
во всей толще атмосферы; 2) излучение
радиоактивных веществ,
Электрический ток в атмосфере.
Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = El, со средней плотностью, равной около (2—3)·10-12 а/м2. Т. о., в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е » 0,37 от своего первоначального значения, равно ~ 500 сек. Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» Атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.
«Генераторы» атмосферного электричества.
«Генераторами» Атмосферного
электричества в зонах
По мере укрупнения
частиц облака, увеличения его
толщины, усиления осадков из
него растет его электризация.
Так, в слоистых и слоисто-