Исследование электрических свойств металлов и полупроводников

Автор: Пользователь скрыл имя, 14 Июня 2013 в 22:31, курсовая работа

Краткое описание

В данном курсовом проекте будет освещен материал по темам «Цветные металлы: классификация, области применения» и «Металлические проводниковые и полупроводниковые материалы, магнитные материалы», вторую из них совместил из трех тем, чтобы показать основу по роду моей профессии, т.к. занят в энергетической области.

Оглавление

Введение
Металлические проводниковые и полупроводниковые материалы, магнитные материалы
Классификация электротехнических материалов
Проводниковые материалы
Полупроводниковые материалы
Магнитные материалы

Файлы: 1 файл

курсовая работа.docx

— 78.05 Кб (Скачать)

Магнитодиэлектрики - это композиционные материалы, состоящие из 70-80% порошкообразного магнитного материала и 30-20% органического высокополимерного диэлектрика. Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими значениями удельного объемного сопротивления, что резко снижает потери на вихревые токи.

Основные классы магнитных  материалов

Все магнитные материалы принято  условно разделять на магнитомягкие и магнитотвердые. Магнитомягкими называют материалы легко перемагничивающиеся под действием внешнего магнитного поля. Для таких материалов характерны низкие значения коэрцитивной силы и высокие значения магнитной проницаемости. Их используют для концентрации магнитного поля. В большинстве случаев магнитомягкие материалы работают в переменных магнитных полях, поэтому для них важно высокое удельное электрическое сопротивление. Исторически первым магнитомягким материалом было малоуглеродистое железо, обладающее низкой механической твердостью. Поэтому такие материалы получили название магнитомягких.

Магнитотвердыми называют материалы  с высокой коэрцитивной силой  и большой остаточной индукцией. Их применяют для изготовления постоянных магнитов - источников постоянного  магнитного поля. Исторически первыми  магнитотвердыми материалами были механически твердые, закаленные углеродистые стали. Поэтому, такие материала получили название магнитотвердых.

Для работы в качестве магнитопроводов в постоянных и низкочастотных полях наиболее подходящими являются железо и его сплавы с кремнием. Поскольку у железа для заполнения 3d орбитали не хватает 4 электронов, атомы железа обладают большим магнитным моментом. В связи с этим, у железа высокая индукция насыщения (2,2 Тл). Следует отметить, что наиболее часто встречающиеся примеси - углерод, кислород, сера и фосфор - плохо растворяются в железе при невысоких температурах и выделяются в виде карбидов, оксидов, сульфидов и фосфидов. Эти включения затрудняют перемещение границ доменов и, тем самым снижают магнитную проницаемость и увеличивают коэрцитивную силу.

Наиболее дешевым материалом является технически чистое железо с суммарным  содержанием примесей до 0,1%. Благодаря  сравнительно низкому удельному  электрическому сопротивлению (»0,1 мкОм м) технически чистое железо используется в основном для магнитопроводов постоянного магнитного потока.

Существенным недостатком технически чистого железа является его старение, то есть повышение коэрцитивной силы со временем за счет выделения тонко дисперсных частиц карбидов и нитридов. Для уменьшения вредного влияния старения химические соединения выделяют заранее в виде сравнительно крупных частиц. Для этого материал подвергают отжигу при 910 – 950 °С и медленному охлаждению.

Очистка железа от примесей приводит к росту магнитной проницаемости  и снижению коэрцитивной силы. Эти  преимущества особенно ярко проявляются  в слабых полях, то есть в полях используемых в радиоэлектронике и измерительных устройствах.

Очистка железа производится электролизом, восстановлением в водороде химически  чистых окислов железа и термическим  разложением пентакарбонила железа (Fe(CO)

Соответственно различают электролитическое, восстановленное и карбонильное железо. Поскольку очистка существенно  увеличивает стоимость материала, его применение крайне ограничено. Наибольшее применение получило карбонильное железо. Это связано с тем, что  при разложении пентакарбонила железа получается металлический порошок. Смешав этот порошок с каким-либо лаком можно получить материал, сочетающий высокое удельное электрическое сопротивление с высокой магнитной проницаемостью.

Магнитно-твердые материалы

Магнитно-твердые материалы обладают большими значениями коэрцитивной силы и большой остаточной индукцией, а следовательно, большими значениями магнитной энергии. К магнитно-твердым материалам относятся:

·           сплавы, закаливаемые на мартенсит (стали, легированные хромом, вольфрамом или кобальтом);

·           железо-никель-алюминиевые нековкие сплавы дисперсионного твердения (альни, альнико и др.);

·           ковкие сплавы на основе железа, кобальта и ванадия (виккалой) или на основе железа, кобальта, молибдена (комоль);

·           сплавы с очень большой коэрцитивной силой на основе благородных металлов (платина - железо; серебро - марганец - алюминий и др.);

·           металлокерамические нековкие материалы, получаемые прессованием порошкообразных компонентов с последующим обжигом отпрессованных изделий (магнитов);

·           магнитно-твердые ферриты;

·           металлопластические нековкие материалы, получаемые из прессовочных порошков, состоящих из частиц магнитно-твердого материала и связующего вещества (синтетическая смола);

·           магнитоэластические материалы (магнитоэласты), состоящие из порошка магнито-твердого материала и эластичного связующего (каучук, резина).

Остаточная индукция у металлопластических и магнитоэластических магнитов на 20-30% меньше по сравнению с литыми магнитами из тех же магнито-твердых материалов (альни, альнико и др.).

Ферриты

Ферриты представляют собой неметаллические  магнитные материалы, изготовленные  из смеси специально подобранных  окислов металлов с окисью железа. Название феррита определяется названием  двухвалентного металла, окисел которого входит в состав феррита. Так, если в  состав феррита входит окись цинка, то феррит называется цинковым; если в  состав материала добавлена окись  марганца - марганцевым.

В технике находят применение сложные (смешанные) ферриты, имеющие более  высокие значения магнитных характеристик  и большее удельное сопротивление  по сравнению с простыми ферритами. Примерами сложных ферритов являются никель-цинковый, марганцево-цинковый и др.

Все ферриты - вещества поликристаллического строения, получаемые из окислов металлов в результате спекания порошков различных окислов при температурах 1100-1300° С. Ферриты могут обрабатываться только абразивным инструментом. Они являются магнитными полупроводниками. Это позволяет применять их в магнитных полях высокой частоты, т. к. потери у них на вихревые токи незначительны.

 

 

 

 

Список использованной литературы:

1.            Барановский П.И., Клочков В.П., Потыкевич И.В. Полупроводниковая электроника (свойства материалов). Справочник. - Киев: Наукова думка, 1975. – 704 с.

2. Воробьев Г.А., Диэлектрические  свойства электроизоляционных материалов. – Томск:. Изд-во Томского университета, 1984. – 126 с.

3. Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. – Ростов-на-Дону: Изд-во Ростовского университета, 1983. – 160


Информация о работе Исследование электрических свойств металлов и полупроводников