Геотермальная энергетика.Состояние отрасли и перспективы её развития в странах СНГ

Автор: Пользователь скрыл имя, 14 Апреля 2012 в 13:41, дипломная работа

Краткое описание

Цель работы – изучить современное состояние мирового топливно-энергетического комплекса и геотермальной энергетики.
В соответствии с поставленной целью, были сформулированы следующие задачи:
Изучить и описать современное положение дел в мировом топливно-энергетическом комплексе;
Рассмотреть состояние современной традиционной электроэнгергетики;

Оглавление

Введение
Электроэнергетика
1.1 Производство электрической энергии
1.2 Транспортировка электрической энергии
1.3 Потребление электрической энергии
Альтернативная энергетика
2.1 Производство электрической энергии
2.2 Использование электрической энергии
2.3 Место альтернативной энергетики в мировом производстве электрической энергии
Геотермальная энергетика
3.1 Принцип действия электростанции
3.2 Развитие геотермальной энергетики за рубежом
3.3 Перспективы развития геотермальной энергетики в странах СНГ
Заключение

Файлы: 1 файл

Геотермальная энергетика.Состояние отрасли и перспективы её развития в странах СНГ.docx

— 568.82 Кб (Скачать)

Значительный вклад гидроэнергетики, которая медленно развивалась в  течение рассматриваемого периода (+1,5% в среднем в год), скрывает динамику развития других направлений  возобновляемой энергетики. Без гидроэнергетики  рост производства электроэнергии на базе возобновляемых источников за последнее  десятилетие составляет 8,5% в год, что более чем вдвое превышает  темпы роста традиционного сектора. Доля возобновляемых источников в суммарном  производстве электроэнергии в мире выросла с 1,1% в 1995 году до 1,9% в 2005 году.

Детальный анализ по направлениям показывает, что наиболее активно  в указанный период времени развивалась  ветроэнергетика.

Среднегодовой прирост выработки  электроэнергии на ветроэлектростанциях (рис. 5) составил 28,4%. Солнечная электроэнергетика, прибавляла каждый год по 19,5%, занимая второе место. Этот прирост отмечен с учетом ге-лиотермодинамических электростанций, выработка которых возрастала в среднем на 1,9% в год. Среднегодовой рост выработки электроэнергии полупроводниковыми фотопреобразователями составил около 31,6%.

Различные направления переработки  биомассы в электроэнергию также  развивались более быстрыми темпами, чем традиционная электроэнергетика. Твердая биомасса, которая на 75% обеспечивает производство электроэнергии данного  направления, показала среднегодовой  прирост использования порядка 4,7%. Этот прирост достигнут благодаря  электростанциям, использующим биомассу и построенным по принципу когенерации*, который 

позволяет одновременно с  выработкой электроэнергии запитывать теплосети или производить пар для технологических целей.

Развитие производства биогаза особенно значительно (1,51% в среднем в год), благодаря все более широкому применению биомето-ногенеза как средства переработки отходов. Использование электроэнергии, производимой электростанциями, сжигающими органические отходы, также возрастало на 5,5% в год.

Экспоненциальный рост направления  по выработке жидкого биотоплива (+216,7% в год) объясняется исключительно очень незначительным производством в начале рассматриваемого периода. Это направление скорее предназначено для производства горючего для транспортных средств (биодиезель - заменитель соляры, биоэтанол и т. д.). Зато рост производства электроэнергии на основе геотермальных источников несколько превосходит показатель традиционной электроэнергетики (+4% против +3,9%).

Два основных фактора определяли этот рост в последнее десятилетие. На первом месте значительный прогресс в области технологий энергетики возобновляемых источников. Это наверняка  привлекло новых инвесторов, заинтересованных перспективами развития, приводящими, в свою очередь, к более активному  технологическому соперничеству. Эти  инвесторы в настоящее время  появились не только в Европе, Америке  и Японии, но и в Китае, на Тайване, в Индии и Бразилии.

В настоящее время мы присутствуем при настоящей глобализации индустрии  возобновляемых источников энергии, которая  вскоре будет более активно развиваться  на мировом уровне. 

На втором месте стоят  вопросы глобальной экологии, а именно угроза климатических изменений, которая  усилила политическую волю многих промышленно  развитых стран к поддержке развития чистых источников энергии. Эта воля выражается в амбициозных проектах возобновляемой энергетики и разработке специфического регламентирующего инструментария, призванного способствовать их воплощению в жизнь (гарантированные цены, «зеленые» сертификаты, квоты, льготное налогообложение и т.д.).

Верно, что на фоне традиционной электроэнергетики доля возобновляемых источников (не считая гидроэнергетики) пока невелика.

Разная конкурентоспособность, большое количество стран, базирующихся на ископаемых видах топлива, противоречия финансирования и очень низкие цены на ископаемые топлива в течение  рассматриваемого периода времени, без сомнения, объясняют эту ситуацию.

В то же время если большинство  направлений возобновляемой энергетики нерентабельны при действующих  ценах, то они уверенно приближаются к порогу рентабельности. Увеличение их доли в мировом производстве электроэнергии показывает все более и более  заметный интерес к этим новым  направлениям. Они доказали свое право  на присутствие в мировой энергетике. Их потенциал начал развиваться, и их конкурентоспособность возрастает.

 

 

    1. Транспортировка электрической энергии

 

Электроэнергетика наряду с  другими отраслями народного  хозяйства рассматривается как  часть единой народно- хозяйственной  экономической системы. В настоящее  время без электрической энергии  наша жизнь немыслима. Электроэнергетика  вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос . Представить без электроэнергии наш быт также невозможно . Столь широкое распространение объясняется ее специфическими свойствами:

-возможности превращаться  практически во все другие  виды энергии (тепловую, механическую, звуковую, световую и другие) ;

-способности относительно  просто передаваться на значительные  расстояния в больших количествах;

-огромным скоростям протекания  электромагнитных процессов;

-способности к дроблению  энергии и образование ее параметров (изменение напряжения, частоты).

Возможность передачи электрической  энергии на расстояния, достигающие  нескольких сотен и даже тысяч километров, обусловливает строительство электростанций вблизи мест нахождения топлива или на многоводных реках, что оказывается более экономичным, чем подвозить большое количество топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

Возможность преобразования электрической энергии в механическую с помощью электроприводов, т. е. применение для получения энергии  конструктивно простых и удобных для эксплуатации электродвигателей вместо громоздких и сложных паровых машин и двигателей внутреннего сгорания, позволяет более рационально использовать производственные площади предприятий, снижать эксплуатационные расходы, осуществлять автоматизацию производственных процессов. Вот почему современные промышленные предприятия насыщаются электродвигателями мощностью от нескольких ватт до нескольких сотен и даже тысяч киловатт. О масштабах применения электродвигателей свидетельствует тот факт, что в настоящее время они потребляют более 50 % всей электроэнергии, производимой в стране. Широкое применение находит электричество не только в промышленности, но и на транспорте: с его помощью приводятся в движение поезда, трамваи, троллейбусы и даже автомобили.

Электрическая энергия вырабатывается на электрических станциях, которые  в зависимости от используемых в  них энергоносителей подразделяются на тепловые (паротурбинные), атомные (реакторные) и гидроэлектрические (гидротурбинные). Существуют также электростанции, использующие энергию ветра и тепла солнечных лучей, но они представляют собой маломощные источники электроэнергии, предназначенные только ддя электроснабжения отдельных мелких потребителей, отдаленных от мощных электростанций и системных сетей.

В нашей стране снабжение  потребителей электроэнергией осуществляется преимущественно от электрических  сетей, объединяющих несколько электростанций. Необходимость такого объединения вызвана тем, что электрические станции, находящиеся даже на территории одной области, работают с неодинаковой нагрузкой, т. е. одни электростанции могут быть перегружены, а в то же время другие могут работать в основном с недогрузкой. Разница в степени загрузки электростанций становится более ощутимой при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью утренних и вечерних максимумов нагрузки.

Чтобы обеспечить надежность электроснабжения потребителей и возможно полнее использовать мощности электростанций, работающих в разных режимах, их объединяют в электроэнергетические системы.

Представление о системе  производства, передачи и распределения  электрической энергии дает схема  электроснабжения потребителей, приведенная на рис. 4. Электрическая энергия, вырабатываемая на электрической станции генераторами, передается при напряжении более высоком, чем генераторное, по линии электропередачи высокого напряжения на подстанцию промышленного предприятия. Для изменения напряжения в системе применяются трансформаторы. Со сборных шин подстанции электроэнергия распределяется по различным электроприемникам: электродвигателям, источникам света, нагревательным приборам и т.д.

Производство электрической  энергии и ее потребление — процессы непрерывные и единые во времени. Электрическую энергию нельзя накапливать в больших количествах, не передавая потребителям, т. е. в каждый момент времени ее выработка должна соответствовать потреблению. Отдельные электростанции не могут обеспечить бесперебойную подачу электроэнергии потребителям, поэтому по мере развития энергетики их объединяют в системы, в которых они работают параллельно на общую нагрузку.

 

Рис. 4. Схема электроснабжения потребителей:

ЭС — электрическая  станция; Г — генератор;

ЛЭП - линия электропередачи, Тр — трансформатор; ПС — подстанция; М — электродвигатель; Л — источник света; Е — нагревательный прибор

 

Объединение электростанций в электроэнергетические системы  имеет большое значение для обеспечения  согласованной работы станций различных типов, особенно тепловых и гидростанций. Мощность гидроагрегатов ГЭС в период паводка и в зимнее время различна, поэтому весной основную нагрузку в энергосистеме несут гидростанции, на тепловых же станциях в это время часть агрегатов основного назначения останавливают, что обеспечивает экономию топлива и проведение плановых ремонтных работ. В зимнее время роли тепловых и гидростанций меняются. Таким образом, появляется возможность создания экономически выгодных режимов работы разных типов электростанций.

Создание энергосистем повышает надежность энергоснабжения и улучшает качество электроэнергии, обеспечивает постоянство напряжения и частоты  вырабатываемого тока, поскольку  колебания потребления воспринимаются одновременно многими электрическими станциями.

Энергетическая система (энергосистема) представляет собой  совокупность электростанций, линий  электропередачи, подстанций и тепловых сетей, связанных в одно целое  общностью режима и непрерывностью процессов производства и распределения электрической и тепловой энергии.

Электрическая система является частью энергосистемы и состоит  из генераторов, распределительных  устройств, электрических сетей (подстанций и линий электропередачи различных напряжений) и электроприемников.

В состав энергосистем (электросистем) входят также производственные предприятия и мастерские, лаборатории и подъемно-транспортные средства, необходимые для выполнения работ, связанных с эксплуатацией всех элементов этих систем.

Эксплуатация энергосистемы  осуществляется инженерами, техниками, мастерами и рабочими соответствующих  квалификаций. Оперативное управление энергосистемой (электросистемой) обеспечивают диспетчеры, обслуживают оборудование электростанций и подстанций — дежурным персонал, а линии электропередачи — линейный персонал.

Энергетические системы  отдельных районов, соединенные  между собой линиями электропередачи, образуют объединенные энергосистемы (например, Уральскую, Сибирскую, Центральную, Северо-западную и др.). Объединением ряда энергосистем (Уральской, Южной, Центральной и др.) была создана Единая Европейская энергосистема России.

 

 

    1. Потребление электрической энергии

 

Вырабатываемая электрическая  энергия поступает к месту  потребления через систему взаимосвязанных  передающих, распределяющих и преобразующих  электроустановок. Передача электроэнергии осуществляется по воздушным линиям электропередачи с напряжением от нескольких сот до сотен тысяч вольт. Электрическая энергия передается по системным воздушным сетям с напряжениями 35, 110, 150, 220 кВ и выше по шкале номинальных напряжений, установленной ГОСТом. Распределение электроэнергии осуществляется при помощи центра питания (ЦП), распределительных пунктов (РП) и распределительных линий (РЛ).

Центром питания называются распределительные устройства (РУ) генераторного напряжения электростанции или вторичного напряжения понижающей подстанции энергосистемы с регулятором напряжения, к которому подсоединены распределительные сети данного района.

Распределительным пунктом  называется подстанция промышленного  предприятия или городской электрической  сети, предназначенная для приема и распределения электроэнергии с одним напряжением без ее преобразования.

Распределительной линией называется линия, питающая ряд трансформаторных подстанций от ЦП или РП или вводы  к электроустановкам потребителей.

Подстанцией называется электрическая  установка, служащая для преобразования и распределения электроэнергии и состоящая из Трансформаторов или других преобразователей электроэнергии, распределительных устройств напряжением до 1000 В и выше, аккумуляторных батарей, аппаратов управления и вспомогательных сооружений.

Информация о работе Геотермальная энергетика.Состояние отрасли и перспективы её развития в странах СНГ