Архимед

Автор: Пользователь скрыл имя, 06 Ноября 2012 в 19:34, доклад

Краткое описание

Архиме́д (Ἀρχιμήδης; 287 до н. э. — 212 до н. э.) — древнегреческий математик, физик, механик и инженер из Сиракуз. Сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений.

Файлы: 1 файл

доклад АРХИМЕД.doc

— 928.00 Кб (Скачать)

Сочинения    

 До наших  дней сохранились:

  • Квадратура параболы / τετραγωνισμὸς παραβολῆς — определяется площадь сегмента параболы.
  • О шаре и цилиндре / περὶ σφαίρας καὶ κυλίνδρου — доказывается, что объём шара равен 2/3 от объёма описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра.
  • О спиралях / περὶ ἑλίκων — выводятся свойства спирали Архимеда.
  • О коноидах и сфероидах / περὶ κωνοειδέων καὶ σφαιροειδέων — определяются объёмы сегментов параболоидов, гиперболоидов и эллипсоидов вращения.
  • О равновесии плоских фигур / περὶ ἰσορροπιῶν — выводится закон равновесия рычага; доказывается, что центр тяжести плоского треугольника находится в точке пересечения его медиан; находятся центры тяжести параллелограмма, трапеции и параболического сегмента.
  • Послание к Эратосфену о методе / πρὸς Ἐρατοσθένην ἔφοδος — обнаружено в 1906 году, по тематике частично дублирует работу «О шаре и цилиндре», но здесь используется механический метод доказательства математических теорем.
  • О плавающих телах / περὶ τῶν ὀχουμένων — выводится закон плавания тел; рассматривается задача о равновесии сечения параболоида, моделирующего корабельный корпус.
  • Измерение круга / κύκλου μέτρησις — до нас дошёл только отрывок из этого сочинения. Именно в нём Архимед вычисляет приближение для числа π.
  • Псаммит / ψαμμίτης — вводится способ записи очень больших чисел.
  • Стомахион / στομάχιον — дано описание популярной игры.
  • Задача Архимеда о быках / πρόβλημα βοικόν — ставится задача, приводимая к уравнению Пелля.

 

    Ряд работ Архимеда сохранился  только в арабском переводе:

  • Трактат о построении около шара телесной фигуры с четырнадцатью основаниями;
  • Книга лемм;
  • Книга о построении круга, разделённого на семь равных частей;
  • Книга о касающихся кругах.

Список использованной литературы:

  1. (Самин Д. К. 100 великих ученых. - М.: Вече, 2000)
  2. Житомирский С. В. Учёный из Сиракуз: Архимед. Историческая повесть. М.: Молодая гвардия, 1982. 191

Интернет ресурсы:

    1. http://www.univer.omsk.su.
    2. http://www.wikipedia.ru
    3. http://www.historik.ru
    4. http://www.to-name.ru
    5. http://www.physchem.chimfak.rsu.ru

Информация о работе Архимед